
Computer architecture
In computer engineering, computer architecture is a set of rules and
methods that describe the functionality, organization, and
implementation of computer systems. Some definitions of
architecture define it as describing the capabilities and programming
model of a computer but not a particular implementation.[1] In other
definitions computer architecture involves instruction set architecture
design, microarchitecture design, logic design, and
implementation.[2]

History

Subcategories

Roles
Definition
Instruction set architecture
Computer organization
Implementation

Design goals
Performance
Power efficiency
Shifts in market demand

See also

References

Sources

External links

The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the
analytical engine. When building the computer Z1 in 1936, Konrad Zuse described in two patent applications for his future projects
that machine instructions could be stored in the same storage used for data, i.e. the stored-program concept.[3][4] Two other early and
important examples are:

John von Neumann's 1945 paper, First Draft of a Report on the EDVAC, which described an organization of logical
elements;[5] and
Alan Turing's more detailed Proposed Electronic Calculator for the Automatic Computing Engine, also 1945 and
which cited John von Neumann's paper.[6]

The term “architecture” in computer literature can be traced to the work of Lyle R. Johnson, Frederick P. Brooks, Jr., and Mohammad
Usman Khan, all members of the Machine Organization department in IBM’s main research center in 1959. Johnson had the
opportunity to write a proprietary research communication about the Stretch, an IBM-developed supercomputer for Los Alamos

A pipelined implementation of the MIPS
architecture. Pipelining is a key concept in
computer architecture.Contents

History

https://en.wikipedia.org/wiki/Computer_engineering
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Logic_design
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Analytical_engine
https://en.wikipedia.org/wiki/Z1_(computer)
https://en.wikipedia.org/wiki/Konrad_Zuse
https://en.wikipedia.org/wiki/Stored-program_computer
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
https://en.wikipedia.org/wiki/Alan_M._Turing
https://en.wikipedia.org/wiki/Automatic_Computing_Engine
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Fred_Brooks
https://en.wikipedia.org/wiki/IBM_7030_Stretch
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
https://en.wikipedia.org/wiki/File:MIPS_Architecture_(Pipelined).svg
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Pipelining


National Laboratory (at the time known as Los Alamos Scientific Laboratory). To describe the level of detail for discussing the
luxuriously embellished computer, he noted that his description of formats, instruction types, hardware parameters, and speed
enhancements were at the level of “system architecture” – a term that seemed more useful than “machine organization.”[7]

Subsequently, Brooks, a Stretch designer, started Chapter 2 of a book (Planning a Computer System: Project Stretch, ed. W.
Buchholz, 1962) by writing,[8]

Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then
designing to meet those needs as effectively as possible within economic and technological constraints.

Brooks went on to help develop the IBM System/360 (now called the IBM zSeries) line of computers, in which “architecture”
became a noun defining “what the user needs to know”.[9] Later, computer users came to use the term in many less-explicit ways.[10]

The earliest computer architectures were designed on paper and then directly built into the final hardware form.[11] Later, computer
architecture prototypes were physically built in the form of a transistor–transistor logic (TTL) computer—such as the prototypes of
the 6800 and the PA-RISC—tested, and tweaked, before committing to the final hardware form. As of the 1990s, new computer
architectures are typically "built", tested, and tweaked—inside some other computer architecture in a computer architecture
simulator; or inside a FPGA as a soft microprocessor; or both—before committing to the final hardware form.[12]

The discipline of computer architecture has three main subcategories:[13]

1. Instruction Set Architecture, or ISA. The ISA defines the machine code that a processor reads and acts upon as well
as the word size, memory address modes, processor registers, and data type.

2. Microarchitecture, or computer organization describes how a particular processor will implement the ISA.[14] The
size of a computer's CPU cache for instance, is an issue that generally has nothing to do with the ISA.

3. System Design includes all of the other hardware components within a computing system. These include:

1. Data processing other than the CPU, such as direct memory access (DMA)
2. Other issues such as virtualization, multiprocessing, and software features.

There are other types of computer architecture. The following types are used in bigger companies like Intel, and count for 1% of all
of computer architecture

Macroarchitecture: architectural layers more abstract than microarchitecture
Assembly Instruction Set Architecture (ISA): A smart assembler may convert an abstract assembly language
common to a group of machines into slightly different machine language for different implementations
Programmer Visible Macroarchitecture: higher level language tools such as compilers may define a consistent
interface or contract to programmers using them, abstracting differences between underlying ISA, UISA, and
microarchitectures. E.g. the C, C++, or Java standards define different Programmer Visible Macroarchitecture.
UISA (Microcode Instruction Set Architecture)—a group of machines with different hardware level microarchitectures
may share a common microcode architecture, and hence a UISA.
Pin Architecture: The hardware functions that a microprocessor should provide to a hardware platform, e.g., the x86
pins A20M, FERR/IGNNE or FLUSH. Also, messages that the processor should emit so that external caches can be
invalidated (emptied). Pin architecture functions are more flexible than ISA functions because external hardware can
adapt to new encodings, or change from a pin to a message. The term "architecture" fits, because the functions must
be provided for compatible systems, even if the detailed method changes.

Subcategories

Roles

Definition

https://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/IBM_zSeries
https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Motorola_6800#Development_team
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Computer_architecture_simulator
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Word_size
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Systems_design
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Architectural_layer
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/CPU_cache


The purpose is to design a computer that maximizes performance while keeping power consumption in check, costs low relative to
the amount of expected performance, and is also very reliable. For this, many aspects are to be considered which includes instruction
set design, functional organization, logic design, and implementation. The implementation involves integrated circuit design,
packaging, power, and cooling. Optimization of the design requires familiarity with compilers, operating systems to logic design, and
packaging.[15]

An instruction set architecture (ISA) is the interface between the computer's software and hardware and also can be viewed as the
programmer's view of the machine. Computers do not understand high-level programming languages such as Java, C++, or most
programming languages used. A processor only understands instructions encoded in some numerical fashion, usually as binary
numbers. Software tools, such as compilers, translate those high level languages into instructions that the processor can understand.

Besides instructions, the ISA defines items in the computer that are available to a program—e.g. data types, registers, addressing
modes, and memory. Instructions locate these available items with register indexes (or names) and memory addressing modes.

The ISA of a computer is usually described in a small instruction manual, which describes how the instructions are encoded. Also, it
may define short (vaguely) mnemonic names for the instructions. The names can be recognized by a software development tool
called an assembler. An assembler is a computer program that translates a human-readable form of the ISA into a computer-readable
form. Disassemblers are also widely available, usually in debuggers and software programs to isolate and correct malfunctions in
binary computer programs.

ISAs vary in quality and completeness. A good ISA compromises between programmer convenience (how easy the code is to
understand), size of the code (how much code is required to do a specific action), cost of the computer to interpret the instructions
(more complexity means more hardware needed to decode and execute the instructions), and speed of the computer (with more
complex decoding hardware comes longer decode time). Memory organization defines how instructions interact with the memory,
and how memory interacts with itself.

During design emulation software (emulators) can run programs written in a proposed instruction set. Modern emulators can measure
size, cost, and speed to determine if a particular ISA is meeting its goals.

Computer organization helps optimize performance-based products. For example, software engineers need to know the processing
power of processors. They may need to optimize software in order to gain the most performance for the lowest price. This can require
quite detailed analysis of the computer's organization. For example, in a SD card, the designers might need to arrange the card so that
the most data can be processed in the fastest possible way.

Computer organization also helps plan the selection of a processor for a particular project. Multimedia projects may need very rapid
data access, while virtual machines may need fast interrupts. Sometimes certain tasks need additional components as well. For
example, a computer capable of running a virtual machine needs virtual memory hardware so that the memory of different virtual
computers can be kept separated. Computer organization and features also affect power consumption and processor cost.

Once an instruction set and micro-architecture are designed, a practical machine must be developed. This design process is called the
implementation. Implementation is usually not considered architectural design, but rather hardware design engineering.
Implementation can be further broken down into several steps:

Logic Implementation designs the circuits required at a logic gate level
Circuit Implementation does transistor-level designs of basic elements (gates, multiplexers, latches etc.) as well as
of some larger blocks (ALUs, caches etc.) that may be implemented at the log gate level, or even at the physical
level if the design calls for it.

Instruction set architecture

Computer organization

Implementation

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Assembler_(computer_programming)
https://en.wikipedia.org/wiki/Disassembler
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Engineering_design_process
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Arithmetic_logic_unit


Physical Implementation draws physical circuits. The different circuit components are placed in a chip floorplan or
on a board and the wires connecting them are created.
Design Validation tests the computer as a whole to see if it works in all situations and all timings. Once the design
validation process starts, the design at the logic level are tested using logic emulators. However, this is usually too
slow to run realistic test. So, after making corrections based on the first test, prototypes are constructed using Field-
Programmable Gate-Arrays (FPGAs). Most hobby projects stop at this stage. The final step is to test prototype
integrated circuits. Integrated circuits may require several redesigns to fix problems.

For CPUs, the entire implementation process is organized differently and is often referred to as CPU design.

The exact form of a computer system depends on the constraints and goals. Computer architectures usually trade off standards, power
versus performance, cost, memory capacity, latency (latency is the amount of time that it takes for information from one node to
travel to the source) and throughput. Sometimes other considerations, such as features, size, weight, reliability, and expandability are
also factors.

The most common scheme does an in depth power analysis and figures out how to keep power consumption low, while maintaining
adequate performance.

Modern computer performance is often described in IPC (instructions per cycle). This measures the efficiency of the architecture at
any clock frequency. Since a faster rate can make a faster computer, this is a useful measurement. Older computers had IPC counts as
low as 0.1 instructions per cycle. Simple modern processors easily reach near 1. Superscalar processors may reach three to five IPC
by executing several instructions per clock cycle.

Counting machine language instructions would be misleading because they can do varying amounts of work in different ISAs. The
"instruction" in the standard measurements is not a count of the ISA's actual machine language instructions, but a unit of
measurement, usually based on the speed of the VAX computer architecture.

Many people used to measure a computer's speed by the clock rate (usually in MHz or GHz). This refers to the cycles per second of
the main clock of the CPU. However, this metric is somewhat misleading, as a machine with a higher clock rate may not necessarily
have greater performance. As a result, manufacturers have moved away from clock speed as a measure of performance.

Other factors influence speed, such as the mix of functional units, bus speeds, available memory, and the type and order of
instructions in the programs.

There are two main types of speed: latency and throughput. Latency is the time between the start of a process and its completion.
Throughput is the amount of work done per unit time. Interrupt latency is the guaranteed maximum response time of the system to an
electronic event (like when the disk drive finishes moving some data).

Performance is affected by a very wide range of design choices — for example, pipelining a processor usually makes latency worse,
but makes throughput better. Computers that control machinery usually need low interrupt latencies. These computers operate in a
real-time environment and fail if an operation is not completed in a specified amount of time. For example, computer-controlled anti-
lock brakes must begin braking within a predictable, short time after the brake pedal is sensed or else failure of the brake will occur.

Benchmarking takes all these factors into account by measuring the time a computer takes to run through a series of test programs.
Although benchmarking shows strengths, it shouldn't be how you choose a computer. Often the measured machines split on different
measures. For example, one system might handle scientific applications quickly, while another might render video games more
smoothly. Furthermore, designers may target and add special features to their products, through hardware or software, that permit a
specific benchmark to execute quickly but don't offer similar advantages to general tasks.

Design goals

Performance

Power efficiency

https://en.wikipedia.org/wiki/Floorplan_(microelectronics)
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Instructions_per_cycle
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Functional_unit
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Interrupt_latency
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Benchmark_(computing)


Power efficiency is another important measurement in modern computers. A higher power efficiency can often be traded for lower
speed or higher cost. The typical measurement when referring to power consumption in computer architecture is MIPS/W (millions
of instructions per second per watt).

Modern circuits have less power required per transistor as the number of transistors per chip grows.[16] This is because each
transistor that is put in a new chip requires its own power supply and requires new pathways to be built to power it. However the
number of transistors per chip is starting to increase at a slower rate. Therefore, power efficiency is starting to become as important, if
not more important than fitting more and more transistors into a single chip. Recent processor designs have shown this emphasis as
they put more focus on power efficiency rather than cramming as many transistors into a single chip as possible.[17] In the world of
embedded computers, power efficiency has long been an important goal next to throughput and latency.

Increases in publicly released refresh rates have grown slowly over the past few years, with respect to vast leaps in power
consumption reduction and miniaturization demand. This has led to a new demand for longer battery life and reductions in size due to
the mobile technology being produced at a greater rate. This change in focus from greater refresh rates to power consumption and
miniaturization can be shown by the significant reductions in power consumption, as much as 50%, that were reported by Intel in
their release of the Haswell microarchitecture; where they dropped their power consumption benchmark from 30-40 watts down to
10-20 watts.[18] Comparing this to the processing speed increase of 3 GHz to 4 GHz (2002 to 2006)[19] it can be seen that the focus
in research and development are shifting away from refresh rates and moving towards consuming less power and taking up less
space.

Comparison of CPU architectures
Computer hardware
CPU design
Floating point
Von Neumann
Harvard (Modified)
Dataflow
TTA
Reconfigurable computing
Influence of the IBM PC on the personal computer market
Orthogonal instruction set
Software architecture
von Neumann architecture
Flynn's taxonomy

1. Clements, Alan. Principles of Computer Hardware (Fourth ed.). p. 1. "Architecture describes the internal organization
of a computer in an abstract way; that is, it defines the capabilities of the computer and its programming model. You
can have two computers that have been constructed in different ways with different technologies but with the same
architecture."

2. Hennessy, John; Patterson, David. Computer Architecture: A Quantitative Approach (Fifth ed.). p. 11. "This task has
many aspects, including instruction set design, functional organization, logic design, and implementation."

3. "Electronic Digital Computers" (http://www.computer50.org/kgill/mark1/natletter.html), Nature, 162: 487, 25
September 1948, doi:10.1038/162487a0 (https://doi.org/10.1038%2F162487a0), retrieved 2009-04-10

4. Susanne Faber, "Konrad Zuses Bemuehungen um die Patentanmeldung der Z3", 2000

5. Neumann, John (1945). First Draft of a Report on the EDVAC. p. 9.

Shifts in market demand

See also

References

https://en.wikipedia.org/wiki/Haswell_(microarchitecture)
https://en.wikipedia.org/wiki/Comparison_of_CPU_architectures
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Modified_Harvard_architecture
https://en.wikipedia.org/wiki/Dataflow_architecture
https://en.wikipedia.org/wiki/Transport_triggered_architecture
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Influence_of_the_IBM_PC_on_the_personal_computer_market
https://en.wikipedia.org/wiki/Orthogonal_instruction_set
https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
http://www.computer50.org/kgill/mark1/natletter.html
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1038%2F162487a0


John L. Hennessy and David Patterson (2006). Computer Architecture: A Quantitative Approach (Fourth ed.).
Morgan Kaufmann. ISBN 978-0-12-370490-0.
Barton, Robert S., "Functional Design of Computers", Communications of the ACM 4(9): 405 (1961).
Barton, Robert S., "A New Approach to the Functional Design of a Digital Computer", Proceedings of the Western
Joint Computer Conference, May 1961, pp. 393–396. About the design of the Burroughs B5000 computer.
Bell, C. Gordon; and Newell, Allen (1971). "Computer Structures: Readings and Examples", McGraw-Hill.
Blaauw, G.A., and Brooks, F.P., Jr., "The Structure of System/360, Part I-Outline of the Logical Structure", IBM
Systems Journal, vol. 3, no. 2, pp. 119–135, 1964.
Tanenbaum, Andrew S. (1979). Structured Computer Organization. Englewood Cliffs, New Jersey: Prentice-Hall.
ISBN 0-13-148521-0.

ISCA: Proceedings of the International Symposium on Computer Architecture
Micro: IEEE/ACM International Symposium on Microarchitecture
HPCA: International Symposium on High Performance Computer Architecture
ASPLOS: International Conference on Architectural Support for Programming Languages and Operating Systems
ACM Transactions on Architecture and Code Optimization
IEEE Transactions on Computers
The von Neumann Architecture of Computer Systems

Retrieved from "https://en.wikipedia.org/w/index.php?title=Computer_architecture&oldid=828946392"

6. Reproduced in B. J. Copeland (Ed.), "Alan Turing's Automatic Computing Engine", OUP, 2005, pp. 369-454.

7. Johnson, Lyle (1960). "A Description of Stretch" (http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/0
5-10/102634114.pdf) (PDF). p. 1. Retrieved 7 October 2017.

8. Buchholz, Werner (1962). Planning a Computer System. p. 5.

9. "System 360, From Computers to Computer Systems" (http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/syste
m360/). IBM100. Retrieved 11 May 2017.

10. Hellige, Hans Dieter (2004). "Die Genese von Wissenschaftskonzeptionen der Computerarchitektur: Vom "system of
organs" zum Schichtmodell des Designraums". Geschichten der Informatik: Visionen, Paradigmen, Leitmotive.
pp. 411–472.

11. ACE underwent seven paper designs in one year, before a prototype was initiated in 1948. [B. J. Copeland (Ed.),
"Alan Turing's Automatic Computing Engine", OUP, 2005, p. 57]

12. Schmalz. "Organization of Computer Systems" (https://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html). UF CISE.
Retrieved 11 May 2017.

13. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach (Third ed.). Morgan
Kaufmann Publishers.

14. Laplante, Phillip A. (2001). Dictionary of Computer Science, Engineering, and Technology. CRC Press. pp. 94–95.
ISBN 0-8493-2691-5.

15. Martin, Milo. "What is computer architecture?" (https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/00_intro.pd
f) (PDF). UPENN. Retrieved 11 May 2017.

16. "Integrated circuits and fabrication" (http://eacharya.inflibnet.ac.in/data-server/eacharya-documents/53e0c6cbe4130
16f23443704_INFIEP_33/192/ET/33-192-ET-V1-S1__ssed_unit_4_module_10_integrated_circuits_and_fabrication_
e-text.pdf) (PDF). Retrieved 8 May 2017.

17. "Exynos 9 Series (8895)" (http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8895/?CID=
AFL-hq-mul-0813-11000170). Samsung. Retrieved 8 May 2017.

18. "Measuring Processor Power TDP vs ACP" (http://www.intel.com/content/dam/doc/white-paper/resources-xeon-mea
suring-processor-power-paper.pdf) (PDF). Intel. April 2011. Retrieved 5 May 2017.

19. "History of Processor Performance" (http://www.cs.columbia.edu/~sedwards/classes/2012/3827-spring/advanced-arc
h-2011.pdf) (PDF). cs.columbia.edu. 24 April 2012. Retrieved 5 May 2017.

Sources

External links

https://en.wikipedia.org/wiki/John_L._Hennessy
https://en.wikipedia.org/wiki/David_Patterson_(scientist)
http://www.elsevierdirect.com/product.jsp?isbn=9780123704900
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-370490-0
https://en.wikipedia.org/wiki/Robert_S._Barton
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/Gordon_Bell
https://en.wikipedia.org/wiki/Allen_Newell
http://research.microsoft.com/en-us/um/people/gbell/Computer_Structures__Readings_and_Examples/contents.html
https://en.wikipedia.org/wiki/Gerrit_Blaauw
https://en.wikipedia.org/wiki/Fred_Brooks
http://domino.research.ibm.com/tchjr/journalindex.nsf/d9f0a910ab8b637485256bc80066a393/95dc427e3fd3024a85256bfa006859f7?OpenDocument
https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
https://en.wikipedia.org/wiki/Englewood_Cliffs,_New_Jersey
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-148521-0
http://portal.acm.org/toc.cfm?id=SERIES416&type=series&coll=GUIDE&dl=GUIDE&CFID=41492512&CFTOKEN=82922478
http://www.microarch.org/
http://www.hpcaconf.org/
http://portal.acm.org/toc.cfm?id=SERIES311&type=series&coll=GUIDE&dl=GUIDE&CFID=41492415&CFTOKEN=3676847
http://www.acm.org/taco/
http://www.computer.org/portal/web/tc/home
http://www-scf.usc.edu/~inf520/downloads/The%20von%20Neumann%20Architecture%20of%20Computer%20Systems.pdf
https://en.wikipedia.org/w/index.php?title=Computer_architecture&oldid=828946392
http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/05-10/102634114.pdf
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/system360/
https://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-8493-2691-5
https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/00_intro.pdf
http://eacharya.inflibnet.ac.in/data-server/eacharya-documents/53e0c6cbe413016f23443704_INFIEP_33/192/ET/33-192-ET-V1-S1__ssed_unit_4_module_10_integrated_circuits_and_fabrication_e-text.pdf
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8895/?CID=AFL-hq-mul-0813-11000170
http://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf
http://www.cs.columbia.edu/~sedwards/classes/2012/3827-spring/advanced-arch-2011.pdf


This page was last edited on 5 March 2018, at 18:48.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

