CHAPTER 2

Types of ore deposits and their origin

2.1 Introduction

The crustal abundance of geochemical elements that form ore deposits containing valuable metals that can be explored for economic gain is examined in the following sections in terms of their occurrences and their respective origins, genesis and classification.

An ore is a metalliferous mineral or an aggregate of metalliferrous minerals, more or less mixed with gangue, which from the standpoint of (1) a miner, can be won at a profit, or from the standpoint of (2) a metallurgist, can be treated at a profit (Evans, 1993). On the geological point of view, mineral deposits are geochemical anomalies in the earth’s crust due to their local high concentration of one or a diverse suite of trace elements [Ni, Au, Ag, Co, Cr, Sc, rare earth element (REE), platinum group elements (PGEs), high field strength elements (HFS), etc.], that may develop geochemical footprints (González-Álvarez et al., 2016). Economically, mineable aggregates of ore minerals are termed as ore bodies, ore shoots, ore deposits, or ore reserves.

There is almost every mineral at any place in or on the crust at different quantities; that is, at high, low, or trace concentrations. The minerals that occur in higher concentrations in many localities are known as abundant minerals and those in lower proportions, scarce minerals. Similarly, metals that occur in higher concentrations and lower concentrations are known as abundant and scarce metals, respectively.

Most abundant metals and minerals do not attract the attention of mineral explorers, whereas those that occur in trace amounts are of interest. Metals like gold, silver, copper, nickel, etc occur rarely in the crust, while at the same time, their uses are highly needed—just in
accordance to the law of supply and demand: the higher the supply, the lower the demand and vice versa. Geochemical abundance and scarcity of metals when plotted using crustal abundances against production estimates allow estimates to be made of the relative rates of depletion of certain metals relatives to others (e.g., Einaudi, 2000; Laznicka, 2014; Peck and Huminicki, 2016).

Metals used in industrial and technological applications can be divided into two classes based on their abundance in the earth’s crust. The geochemically abundant metals, of which there are five (Al, Fe, Mg, Mn, and Ti), constitute \(>0.1\%\) by weight of the earth’s crust, while the geochemically scarce metals, which embrace all other metals (including familiar ones such as Cu, Pb, Zn, Au, Ag), constitute \(<0.1\%\). In almost every rock, at least tiny amounts of all metals can be detected by sensitive chemical analysis.

2.1.1 Occurrence of ore deposits

Whether minerals can occur in higher or trace quantities (as crustal abundances, Table 2.1), there is always a level at which they can be considered economic or noneconomic. For instance, although gold is present almost everywhere in the crust, economic mineral deposits are isolated. On the other hand, although quartz is almost present everywhere in large quantities, the economic quartz needs to meet some criteria of purity, mineral associations, type, and quantity and yet, the abundance of quartz makes its price inferior to rare metals/minerals such as gold, tanzanite, etc.

It should be noted here that, average crustal values are different from upper or lower crustal values. For instance, the average Clarke value of Cu in the upper crust is 55 ppm (Ridley, 2013) but that of the average crust is about 27 ppm (Heinrich and Candela, 2014; Table 2.2). See also Hu and Gao (2008).

For an economic mineral deposit to form, four factors should be met; (1) presence of source of the ore components (metals and ligands such as S, H, C, Cl, S, or the combination), (2) transportation mechanism of the ore to an appropriate site (fluid such as \(\text{H}_2\text{O}\), biological and/or mechanical means), (3) depositional mechanism that puts together the ore components into ore minerals, and (4) appropriate geological setting for the ore body to be preserved (e.g., Guilbert and Park, 1986).

Regarding the factors to be considered on the mineralogy of a mineral deposit so as to classify it as economic or not, Moon et al. (2006) considered the mineralogical form (e.g., native Cu vs chalcopyrite, \(\text{CuFeS}_2\)) and the undesirable constituents (e.g., tennantite, \(\text{Cu}_{12}\text{As}_4\text{S}_{13}\) vs copper concentrates) as key factors. They summarize the information...

Applied Geochemistry
that is required from a sample in order to know whether a given deposit is economic or not includes some, or all, of the following: (1) grade of the economic minerals, (2) the bulk chemical composition, (3) the minerals present, (4) the proportions of each of these minerals and their chemical compositions, (5) their grain size, (6) their textures and mineral locking patterns, and (7) any changes in these features from one part of an ore body to another.

Of the items (1)—(7) listed previously, item (4) on mineral proportions is briefly explained as an example of information useful in determining whether an ore body is economic or not. Consider mineralized systems of PGEs. Strong correlations between Pt/Ti, Pd/Ti, and Rh/Ti ratios indicate mineralized systems of PGE as compared to other variations attributable to magmatic processes, such as olivine accumulation and fractionations that can be depicted from variations of PGE/Ti ratios (Fiorentini et al., 2018). An unusual high concentration of SiO₂, MgO, and Cr and low Al₂O₃ comprise 75% of the world PGE resource,
TABLE 2.2 Typical mineable ore cutoff grades of selected elements in comparison with their average crustal abundance.

<table>
<thead>
<tr>
<th>Element</th>
<th>Deposit type</th>
<th>Typical ore grade (ppm = gt⁻¹)</th>
<th>Concentration in crust (ppm)</th>
<th>Enrichment factor</th>
<th>Largest deposits (example)</th>
<th>Tonnage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Lateritic bauxite</td>
<td>240,000</td>
<td>84,200</td>
<td>3</td>
<td>Weipa (Australia)</td>
<td>149 Mt</td>
<td>28%</td>
</tr>
<tr>
<td>Fe</td>
<td>Banded iron formation upgraded</td>
<td>640,000</td>
<td>52,200</td>
<td>12</td>
<td>Mount whaleback (Australia)</td>
<td>>1800 Mt</td>
<td>65.0%</td>
</tr>
<tr>
<td>Ti</td>
<td>Mafic intrusions (ilmenite)</td>
<td>80,000</td>
<td>57,000</td>
<td>14</td>
<td>Lac tio (Canada)</td>
<td>1800 Mt</td>
<td>65.0%</td>
</tr>
<tr>
<td>P</td>
<td>Marine sedimentary deposits</td>
<td>100,000</td>
<td>570</td>
<td>180</td>
<td>Meade Peak member (United States)</td>
<td>>10¹¹ Mt</td>
<td>10%</td>
</tr>
<tr>
<td>V</td>
<td>Layered mafic intrusions (magnetite)</td>
<td>2000</td>
<td>138</td>
<td>14</td>
<td>Bushveld Complex (South Africa)</td>
<td>50 Mt</td>
<td>0.8%</td>
</tr>
<tr>
<td>Cr</td>
<td>Layered mafic intrusions (chromite)</td>
<td>160,000</td>
<td>135</td>
<td>1200</td>
<td>Bushveld Complex (South Africa)</td>
<td>2700 Mt</td>
<td>19%</td>
</tr>
<tr>
<td>Zn</td>
<td>Stratiform Pb–Zn–Ag deposits</td>
<td>87,000</td>
<td>72</td>
<td>1200</td>
<td>Broken Hill (Australia)</td>
<td>284 Mt</td>
<td>11%</td>
</tr>
<tr>
<td>Ni</td>
<td>Magnetic Ni–Cu–Sulfide</td>
<td>13,000</td>
<td>59</td>
<td>220</td>
<td>Jinchuan, Baijiazuizi (China)</td>
<td>515 Mt</td>
<td>1.1%</td>
</tr>
<tr>
<td>Rb</td>
<td>Pegmatites from Rb-bearing Lepidolite</td>
<td>5000</td>
<td>49</td>
<td>100</td>
<td>Tanco (Canada)</td>
<td>0.5 Mt</td>
<td>1.0%</td>
</tr>
<tr>
<td>Cu</td>
<td>Hosted deposited copper sediments</td>
<td>5000</td>
<td>27</td>
<td>180</td>
<td>El Taniente (Chile)</td>
<td>2850 Mt</td>
<td>1.3%</td>
</tr>
<tr>
<td>Cu</td>
<td>Stratiform Pb–Zn–Ag deposits</td>
<td>23,000</td>
<td>27</td>
<td>850</td>
<td>Lubin (Poland)</td>
<td>2600 Mt</td>
<td>2.0%</td>
</tr>
<tr>
<td>Pb</td>
<td>Stratiform Pb–Zn–Ag deposits</td>
<td>47,000</td>
<td>11</td>
<td>4300</td>
<td>Broken Hill (Australia)</td>
<td>160 Mt</td>
<td>2.0%</td>
</tr>
<tr>
<td>Element</td>
<td>Deposit Type</td>
<td>Tonnage (Mt)</td>
<td>Average Grade</td>
<td>Location</td>
<td>Grade (g/t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>Carbonitites</td>
<td>2898</td>
<td>2%</td>
<td>Seis Lagos (Brazil)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>Carbonitites</td>
<td>750</td>
<td>4.1%</td>
<td>Bayan obo (China)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Skarn replacement, and vein deposits</td>
<td>270</td>
<td>0.22%</td>
<td>Shizhuayan (Skarn, China)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>Porphyry molybdenum deposits</td>
<td>769</td>
<td>0.22%</td>
<td>Climax (Colorado, United States)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>Pegmatites</td>
<td>2.07</td>
<td>0.18%</td>
<td>Tanco (Canada)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>Polymetallic vein deposits</td>
<td>985</td>
<td>166 gt⁻¹</td>
<td>Cerro Rico de Potosi (Bolivia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In</td>
<td>Volcanic-hosted massive sulfide deposits</td>
<td>134</td>
<td>50 gt⁻¹</td>
<td>Kidd Creek (Canada)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>Epithermal veins and breccias</td>
<td>40</td>
<td>>1%</td>
<td>Almaden (Spain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>Magmatic PGE–Ni–Cu sulfide deposits</td>
<td>9815</td>
<td>2.3 gt⁻¹</td>
<td>Bushveld Complex (South Africa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>Hydrothermal vein deposits</td>
<td>2200</td>
<td>2.4 gt⁻¹</td>
<td>Muruntau (Uzbekistan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>Modified Archean placers</td>
<td>>10⁴</td>
<td>5 gt⁻¹</td>
<td>Witwatersrand Basin (South Africa)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PGE, Platinum group element.

Tonnage (total mass of mined and economically mineable ore) and average grade of some of the largest ore deposits of each type. All values in weights units. Average concentration in crust from Rudnick and Gao (2003). Estimates of average grades indicative only, mostly based on USGS and Canadian Geological Survey compilations but partly representing single big deposits. Grades and tonnages of some of the largest deposits mostly represent single mines, but in the case of the Meade Peak phosphorite, the Bushveld Complex, and the Witwaters and Basin are estimates for one or several rock units that are mineralized at presently economic ore grades for the respective elements (Heinrich and Candela, 2014).

Bushveld complex, Great Dyke of Zimbabwe, and Still Water (Naldrett, 2010). The Fe oxide–Cu–Au (IOCG) deposits are commonly associated with presulfide sodic or sodic–calcic alteration and have abundant to low Ti–Fe oxides and/or Fe silicates intimately associated with, but generally paragenetically older than, Fe–Cu sulfides, have light rare earth elements (LREE) enrichment and low S-sulfides [lack of abundant pyrite (Groves et al., 2010)]. According to Macheyeki (2011), Pd/V and (Pd/V)/(Cu/Cr) ratios discriminate between barren and mineralized environments (see Chapter 3: Conventional and nonconventional exploration techniques—principles, and Chapter 4: Application of nonconventional mineral exploration techniques—case studies for details).

2.1.2 Genesis and classification of ore deposits

2.1.2.1 Syngenetic and epigenetic genesis of ore deposits

Ore deposits of economic value are formed under varied geological conditions. Two groups of ore deposits may be established syngenetic and epigenetic depending on their formation time relationship to the rocks associated with them (Robb, 2005). Syngenetic mineral deposits are formed at the same time as the associated rocks as in magmatic segregation during the orthomagmatic stage of consolidation of magma or during precipitation of sedimentary rocks. Formation of ore deposits in gossans and laterites due to in situ residual gossans are also considered as syngenetic because as the new rock (laterite, bauxite, kaolinite, or duricrust) is formed it is at that same time the ore deposit is formed.

The epigenetic mineral deposits are formed later after the enclosing or host rocks have been formed in filled or opened fissures in the country rocks and such ore bodies are called lodes or veins. These vein and lode deposits occur as in interstices of the country where the rock forms first and then ores form as impregnations or replacements of the country rock. In contact metamorphism mineral deposits form irregular ore bodies on the margins of metamorphosed rocks. In sedimentary rocks epigenetic processes, ore deposits are formed due to weathering and deposition of detrital sedimentary rocks in basins where placer deposits are emplaced.

2.1.2.2 Origin and classification

Ore deposits can be classified according to the genesis of the deposits (e.g., Cox and Singer, 1986), host rocks such as shale hosted deposits (Misra, 2000; Robb, 2005; Moon et al., 2006), breccia pipes, the minerals contained within the deposit such as porphyry copper deposits (e.g.,
Moon et al., 2006), and the shape or size of the deposit such as strataform and stratabound deposits (Evans and Moon, 2006).

Basic genetic processes that lead to the concentration of minerals include (1) magmatic mineral deposits that get concentrated in igneous rocks; (2) hydrothermal mineral deposits that form in association with magma and water; (3) sedimentary mineral deposits that are precipitated from a solution, typically seawater; (4) placer minerals sorted and distributed by flow of water (or ice); and (5) residual mineral deposits formed by weathering reactions at the earth’s surface (e.g., Moon et al., 2006). Meyer (1981) ore classification is based on both genetic type and rock association. The classification based on both genesis and rock association relates the rock-forming process to ore-forming process, which is more descriptive empirical observation as compared to the genetic linkage alone that tends to have controversy (e.g., Robb, 2005).

Major theories of ore genesis are diverse (Niggli, 1929; Schneider, 1964; Lindgren, 1922, 1933; Bateman, 1950; Guilbert and Park, 1986; Stanton, 1972); in other words, there are no acceptable theories that can explain the entire ore genesis we see today. Stanton (1972) in his account gives much detail on these theories and the reader is referred to that work and the references therein for details. The reader should be cautioned, however, that very often several processes contribute to the formation of an ore body. Thus where we have rising hot aqueous solution forming an epigenetic stockwork deposit just below the surface and passing on upward through it to form a contiguous syngenetic deposit under, say, marine condition, even the above simple classification is facing difficulties. This is the reason why ore geologists, besides producing a plethora of ore genesis theories, have also created a plethora of ore body classification! (e.g., Ridley, 2013).

While in the 19th century, classifications of ore deposits were based on form, texture, and mineral content, Niggli’s classification in 1929 was based on volcanic–plutonic rocks and that of Lindgren’s classification in 1933 was based on depth temperature. Schneider’s classification (1941) was based related to magmatic processes, the latter 20th century to-date classification emphasizes on theories of genesis and environment of deposition (transport medium). In the latter classification, types of ore deposits are presented along with their nature of forming processes.

There are basically three types of ore deposits based on their environment of deposition and genesis: (1) deposits due to internal processes, (2) deposits due to external/surface processes, and (3) deposits due to both internal and surface processes (after Moon, 2016). However, based on ore genetic origin, there are two types of ore deposits: (1) ore deposits formed out of or related to igneous intrusions, such as porphyry-type deposits (PD) and IOCG and (2) sedimentary deposits such as
2. Types of ore deposits and their origin

Carlin-type and Mississippi Valley type (MVT) deposits (Cline et al., 2005; Leach et al., 2005; Seedorff et al., 2005; Williams et al., 2005; Groves et al., 2010; Richards, 2011; Vigneresse, 2019). In this book, classification based on genetic and environment of formation/deposition has been adopted.

2.1.2.3 Deposits due to internal processes

Deposits in this group include magmatic (orthomagmatic) ore deposits (Robb, 2005; Moon et al., 2006; Heinrich and Candela, 2014; Moon, 2016). These deposits form as a result of element enrichment from melts at high temperature without essential involvement of aqueous fluids (Heinrich and Candela, 2014). In this type of deposits, heat source (engine) is required in order to drive magmas from different sources in the form of convective cells at a global scale taking fertile magma in the mantle to the crust (e.g., Robb, 2005; Heinrich and Candela, 2014). By so doing, one or several magmatic melt phases are involved that would lead to element partitioning between melts and a phase to be favored is enriched with elements that form the ore deposit (e.g., Robb, 2005; Heinrich and Candela, 2014). An obvious question would be why some parts of the mantle magma are “fertile?” Some magmas can be more fertile than the other because either those magmas inherited surplus of potential ore-forming trace elements or because their source was already enriched in those components (Robb, 2005). Orthomagmatic deposits can be subdivided into:

1. Deposits formed by crystallization of magma (during differentiation of a silicate melt). Chromium, a lithophile element, is a good example of a mineral that crystallizes from silicate magma as a result of magmatic differentiation (e.g., Ridley, 2013). Chromium is a compatible mineral in spinel and in clinopyroxene crystals relative to ultramafic and mafic melts. Further, chromium can largely be retained in the mantle during partial melting and occurs in significantly lower concentrations in average crust (~100 ppm) than in mantle (concentrations up to 1%).

 Highest concentration of Cr in the crust occurs within ultramafic layers of large mafic–ultramafic igneous bodies and chromites in ultramafic rocks are solid solutions with varying amounts of Al$^{3+}$ and Fe$^{3+}$ replacing Cr$^{3+}$, and Mg$^{2+}$ replacing Fe$^{2+}$ (Ridley, 2013). Chromite ores are bodies with greater than about 30% chromite, in many cases almost monomineralic chromitite (=chromite rock), in mafic and ultramafic intrusive rocks. Two common types of chromite deposits are recognized on the basis of ore body form and their geological environment: stratiform chromite deposits in large, layered ultramafic–mafic intrusions; and podiform chromite ores in
ophiolites or “Alpine peridotites” (Ridley, 2013). Examples of these
types of deposits are the Cr deposits in the Bushveld complex in the
Republic of South Africa and the Cr in the Great Dyke of Zimbabwe.
Also magma crystallized deposits are exemplified by the V-
magnetite, Ilmenite in mafic intrusions (Heinrich and Candela, 2014).

Segregation of sulfide melt from silicate melt (i.e., formation of
immiscible sulfide melt phases)—the processes that lead to the
formation of Ni–Cu sulfide deposits in mafic and ultramafic rocks.
Liquation, liquid immiscibility, settling out from magmas of
sulfide, sulfide oxide, or oxide melt that accumulate beneath the
silicates or injected into wall rocks or in rare cases erupted on the
surface (e.g., Naldrett, 2010; Macheyeki, 2011; Ridley, 2013;
Heinrich and Candela, 2014; Moon, 2016). Generally, the Ni–Cu
deposits are usually associated with PGE as by-products (Naldrett,

2. Deposits formed from immiscible sulfide melt phases: PGE sulfide
deposits (Ridley, 2013). Economic PGE primary deposits of this type
are laterally extensive as thin layers or reefs, from less than 1 m thick
to about 20 m thick in layered ultramafic to mafic large-volume and
extensive intrusions in the upper crust. The reefs are broadly parallel
to the cumulate layering, and are continuous along much of the
extent of the exposed intrusions. There may be multiple reefs at
different levels in one layered intrusion. Excluding by- and
coprocess PGE resources of Ni–Cu sulfide deposits, almost all
known economically significant PGE resources are in three
exceptionally large intrusions more than about 4 km thick
(>10,000 km³ volume), which have repeated multiple cycles of
rhythmic cumulate layering and reversals of composition trends of
cumulate minerals of layers of the Great Dyke of Zimbabwe
(Naldrett, 1997; Mason-Apps, 1998; Naldrett, 2004; Ridley, 2013).

The segregation of sulfide melt from silicate melt and the
immiscibility of sulfide phases are actually promoted by tectonic
activities. Both Ni–Cu and PGE, that is, Ni–Cu (PGE) deposits can
be well understood and appreciated when looked at a global scale
and therefore anticipated that this interplay of tectonics with the
dynamic behavior of magmatic systems will become increasingly
recognized, and has important implications for deposit exploration
(Figs. 2.1 and 2.2; Begg et al., 2018).

3. Deposits formed from low-degree (small fraction) partial melting of
mantle (Ridley, 2013; Heinrich and Candela, 2014). The partial
melting of a small fraction of a mantle leads to deposition of LREE in
carbonatites (e.g., Yang and Santosh, 2015).

4. Deposits formed through the incorporation of a mineral from depth
in the earth into magma: diamond deposits in kimberlites and
lamproites (Ridley, 2013; Fig. 2.3). It is the process responsible for the formation of diamond in Kimberlites (Republic of South Africa, Canada, Tanzania, etc.). This process also leads to the formation of strongly alkaline silicate igneous rocks such as in the Kola alkaline province of the Russian Federation (e.g., Petrov, 2004; Heinrich and Candela, 2014).
These deposits are formed through extreme fractionation of magma: rare-metal pegmatites (Ridley, 2013; Heinrich and Candela, 2014; Dill, 2015, Fig. 2.4). The principle of magmatic fractionation and therefore enrichment/depletion of partial elements obeys the equation (Robb, 2005):

\[
\frac{C_{\text{liq}}}{C_o} = \frac{1}{D_{\text{res}} + F(1 - D_{\text{res}})}
\]

(2.1)

where \(C_{\text{liq}}\) is the concentration of a trace element in the liquid (melt); \(C_o\) is the concentration of trace element in parental (unmelted) solid; \(D_{\text{res}}\) is the bulk partition coefficient of the residual solid (after the melt is extracted); \(F\) is the weight fraction of melt produced (Rollinson, 1993, 2012).
It should be noted that the extraction of a partial melt from its residue, whether it be from an igneous or sedimentary protolith, is a process that segregates chemical components (i.e., fractionation). Partial melts can be considerably enriched in certain elements, but depleted in others, relative to the source rock (Robb, 2005). Pegmatites are enriched with elements that are mostly lithophiles and include the large ion lithophile (LILEs) (Li, Rb, Cs, Be), high field strength elements (HFSEs) (Ga, Sn, Hf, Nb, P, Ta, Y, U, Th, REEs), and strongly soluble elements in aqueous solutions (B, F). Examples of currently or recently exploited pegmatites include: Rössing, Namibia for U (Berning et al., 1976); Tanco, Manitoba, Canada for spodumene, Cs, Ta (Černý et al., 1996); Volta Grande, Brazil; Kenticha, Ethiopia; and Green bushes and Wodgina, Western Australia for Sn, Ta (Partington, 1990).

Hydrothermal deposits are deposits from hot aqueous solution (enrichment by selective dissolution, transport, and precipitation, e.g., Heinrich and Candela, 2014), which may have had a magmatic, metamorphic, surface, or other sources (Robb, 2005). In other words for the
metals to be precipitated, they must have been selectively dissolved. How many metals are selectively dissolved is the function of several factors including the nature of metal–ligand complexes that can be formed (Robb, 2005), a process that can be well described by the Pearson’s principle.

The Pearson’s principle states that in a competitive situation, hard metals (acids or electron acceptors) will tend to complex with hard ligands (bases or electron donors), and soft metals with soft ligands. The Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ for example, are hard metals, whereas Au⁺, Ag⁺, Cu⁺ are the soft metals and Zn²⁺, Pb²⁺, Fe²⁺ are the divalent transition metals or borderline metals (Robb, 2005). Other hard metals described in Robb (2005) include Be²⁺, Sr²⁺, Ba²⁺, Fe³⁺ and Ce⁴⁺, Sn⁴⁺, Mo⁴⁺, W⁴⁺, V⁴⁺, Mn⁴ and soft metals include Hg²⁺,
Cd$^{2+}$, Sn$^{2+}$, Pt$^{2+}$, Pd$^{2+}$, and Hg$^{2+}$, Cd$^{2+}$, Sn$^{2+}$, Pt$^{2+}$, Pd$^{2+}$. An example of hard ligand is OH$^-$, F$^-$, Cl$^-$, Br$^-$, I$^-$, whereas HS$^-$, SnS$^2-$, SO$^3^-$, S$_2$O$_3^2-$, SO$_4^{2-}$ is a soft ligand.

The ligands of interest in hydrothermal systems are shown in Table 2.3. These metals and ligands are described in terms of their hard—soft breakdown and how that relationship is applicable to ore-forming processes. The metal—ligand relationship provided above is simply an approximation of what is most likely to happen in the function of variables such as oxidation state, pH, temperature, and fluid composition (Robb, 2005). In nature, metals may complex with any base, most suitable available, thus the metal—ligand complex to be formed will be quite different to those predicted on theoretical grounds (Robb, 2005).

Brugger et al. (2016) show that apart from metal—ligand complexes being available for ore deposition, the ore transport and precipitation of metals are largely controlled by coordination chemistry of hydrothermal systems as shown in the periodic table for hydrothermal geochemistry in Fig. 2.5.

However, in economic geology, what is important is not just the formation of the metal but the formation of a viable ore deposit. It requires the presence of high fluid/rock ratios, as well as efficient precipitation mechanisms to take metals out of solution and concentrate them in the host rock (e.g., Seward and Barnes, 1997). For example, solutions that deposit Au and Ag are typically in the range 1 ppb to 1 ppm, than those associated with Cu, Pb, and Zn ores. In the latter case, massive sulfide deposits are formed from fluids that typically carry 1–100 ppm of metal, whereas the fluids associated with the MVT and PDs are relatively enriched with concentrations in the range 100–1000 ppm.
Skarn deposits (e.g., W, Cu, Au), PDs (e.g., “Cu, Mo porphyries”) and vein deposits (e.g., Sn–W veins) are actually magmatic–hydrothermal deposits because they are caused by fluid saturation of H₂O-bearing magmas (Heinrich and Candela, 2014). Other examples of hydrothermal deposits include Epithermal veins and breccias that are due to continental geothermal systems (i.e., shallow magmatic fluids), Iron oxide hosted Cu–Au–U–REE (“IOCG”) deposits caused by continental magmatic fluids interacting with evaporitic brines, volcanic-hosted massive sulfide deposits due to seawater convection through oceanic crust, orogenic (“mesothermal”) gold–quartz veins due to metamorphic dehydration of deep magmatic fluids, sediment-hosted Cu ± Co deposits and stratiform Pb–Zn–Ag deposits (“sedex” = sedimentary–exhalative), caused by basin brines: connate or meteoric water + evaporites (Heinrich and Candela, 2014). Other examples of hydrothermal deposits due to basin brines are the MVT Pb–Zn + epigenetic replacement in carbonates ± sandstones. Uranium in sandstones (“roll-front U deposits”) and vein—and “unconformity-related U deposits” are also hydrothermal deposits caused by deep infiltration of oxygenated surface waters.

1. Deposits due to lateral secretion. In this type of deposits, ore- and gangue-forming materials from the country rocks diffuse into faults and other structures (Moon, 2016).

Pyrometasomatic deposits are formed by both magmatic and hydrothermal processes, that is, magmatic–hydrothermal ore-forming processes. These deposits can be facilitated by some physical and chemical properties of water such as magmatic–hydrothermal fluids, water solubility in magmas, and first boiling and second boiling of granite-related magmatic–hydrothermal ore deposits. Minerals in this group include porphyry Cu, Mo, and W deposits, polymetallic skarn deposits, and epithermal Au–Ag–(Cu) deposits (Fig. 2.7). Generally, Magmatic–hydrothermal deposits are the sole producers of global Cu, Mo, Sn, W, In, and Re, and are a significant source of Au, Ag, Pb, Zn, and other minor and rare metals (Heinrich and Candela, 2014). Summarized geological context of PD and epithermal ore deposits are shown in Fig. 2.6.

Regions that experienced such kind of deposits include the magmatic–hydrothermal fluids associated with granite intrusions of the La Escondida porphyry Cu deposit in Chile, the MacTung W skarn deposit in Yukon–Canada, and magmatic–hydrothermal fluids in volcanic environments such as the high- and low-sulfidation epithermal gold deposits of Kyushu, Japan and Witwatersrand Basin gold deposit, in South Africa (Tucker et al., 2016).
2.1.2.4 Deposits due to external surface processes

Ore deposits in this category can be due to mechanical accumulation, sedimentary precipitates, residual processes, secondary supergene environment, and volcanic exhalative (sedimentary exhalative):

FIGURE 2.6 Schematic illustration of the geological components, ore types, and processes in crustal-scale magmatic–hydrothermal systems. Porphyry copper deposits form in a dense network of hydrofractures (red) around dikes and stocks above the roof of hydrous magma chambers, by precipitation of sulfides and gold from single phase or more commonly two-phase fluids of coexisting hypersaline liquid (brine) and vapor. Au-rich varieties predominate at shallow levels (1–3 km below surface) while porphyry deposits formed as deep as 8 km are generally Cu ± Mo dominated and Au-poor. Copper ± Zn ± Au skarns, Cordilleran vein, and replacement Cu–Zn–Pb–Ag ± Au deposits, and Carlin-type Au deposits rich in arsenious pyrite are hosted by carbonate-bearing sedimentary host rocks controlling pH by carbonate dissolution; they form at decreasing temperatures and increasing distance from magmatic intrusions. Carlin-type gold deposits are additionally characterized by abundant organic carbon in the host sediments. Their formation temperature and the low salinity of ore fluids with liquid-like density overlap with fluid properties in other epithermal precious metal deposits. High-sulfidation epithermal deposits are characterized by intense acid leaching and sulfate and clay alteration caused by hot low-density magmatic vapor, typically preceding the main stage of ore deposition by low-salinity aqueous liquid. Low-sulfidation epithermal deposits are generally more distal to intrusions and are characterized by near-neutral fluids causing feldspar–muscovite alteration, with a greater proportion of convecting meteoric water and a less obvious magmatic fluid input. Source: From Heinrich, C.A., Candela, P.A., 2014. Fluids and ore formation in the Earth’s crust. In: Treatise on Geochemistry, pp. 1-28.

2.1.2.4 *Deposits due to external surface processes*

Ore deposits in this category can be due to mechanical accumulation, sedimentary precipitates, residual processes, secondary supergene environment, and volcanic exhalative (=sedimentary exhalative):
• Deposits due to mechanical accumulation: This is due to the concentration of heavy, durable minerals into placer deposits (Guilbert and Park, 1986). Examples of minerals deposited by this process are rutile–zircon sands, Tin placers, gold placers, industrial sands, gravels, and kaolin deposits (Moon, 2016).

• Deposits due to sedimentary precipitates: This is due to precipitation of particular elements in suitable sedimentary environments, with or without the intervention of biological organisms (Westphal et al., 2010). Minerals deposited by this process include banded iron formation of Precambrian shields, Mn deposits, evaporite deposits, and phosphate deposits (e.g., Moon, 2016).

• Deposits due to residual processes: These are due to soluble elements in the remaining material are leached from rocks and get deposited somewhere where they form deposits (Guilbert and Park, 1986). Examples of minerals deposited by this process include gossan deposits of Ni laterites, bauxites, and kaolin deposits (Moon, 2016).

• Deposits due to secondary supgene environment: These kinds of deposits are made possible by leaching of valuable elements from the upper parts of mineral deposits and their precipitation at depth to produce higher concentrations. Examples of minerals in this subcategory include many gold and silver bonanzas and the upper parts of a number of porphyry copper deposits (e.g., Robb, 2005; Moon et al., 2006).

• Deposits due to volcanic exhalative (=sedimentary exhalative): These kinds of deposits are due to exhalations of hydrothermal solutions at the surface, usually under marine conditions and generally producing stratiform ore bodies (Robb, 2005). Examples are base metal deposits of Megagan, German; Kuroko deposits of Japan; and Solfatara deposits (kaolin + alunite).

2.1.3 The role of global tectonics and geological time in the formation of ore deposits

Global tectonics is the second major factor in the formation of distinct ore deposit types and a key to understanding their spatial and secular distribution (Groves et al., 2005; Holland, 2005) as most hydrothermal environments where ores deposits are formed are commonly found in many active, continental, and oceanic geothermal fields along plate tectonics margins (Barnes, 2015). Thus chromium deposits form by physical accumulation of what is usually an accessory mineral (chromite, FeCr₂O₄) from large reservoirs of mafic magma. Such magma chambers either form as intraplate layered intrusions (possibly related to mantle plumes) or at spreading axes in the oceanic domain (Stowe, 1994).
The world porphyry Cu–Au belt, for example, is restricted within recent converging/subduction zones. Worldwide, Cu–Au mineralization seems to be restricted within ridge subduction zones that are characterized by adakitic rocks (Sun et al., 2010: 17). Porphyry Cu mineralization seems to be restricted in arc-related structures within the Phanerozoic. This coincides well with the ring of fire. The reason why plate boundaries are the locus of mineralization is that the energy released along boundaries, results in volcanic and hydrothermal activity that creates the right conditions for many minerals to be concentrated. Plate boundaries are also a way for deep-seated rocks from the mantle to find a way to the near-surface because these boundaries, as earlier on hinted, are the weak zones. These rocks become the source of many of our largest mineral deposits. Geologists therefore have to know how the plates move and predict where they could have been in the past—by having a clear understanding of the location of ancient plate boundaries, it is easier to predict where regional mineralization, and hence ore deposits may occur today (Arribas and Mizuta, 2018).

The ore deposit types with global tectonic settings are shown in Fig. 2.7. It should be noted however that global tectonics does not answer all questions related to ore deposits. In other words, location of mineralization on the crust is not necessarily the function of plate tectonics; in fact, some deposit types appear to require the absence of plate tectonics inasmuch as they form tectonically undisturbed regimes (Sangster, 1980). Examples include the MVT-type Pb–Zn deposits, sandstone U deposits, sedimentary barites, phosphates, and superior-type iron formations; they are not easily explained by global tectonics.

In summary, three groups of factors—transport medium, global tectonics, and the earth’s changing climate and atmosphere—allow a first-order explanation for the range of major ore deposit types. Common to all ore-forming processes is the fact that selective element enrichment is an entropy-reducing process that requires a net input of energy. For a deeper understanding of the factors controlling ore formation, we therefore need to focus on the energy sources—that is, the physical and chemical driving forces—contributing to processes separating elements from each other on a large scale and with high efficiency (Heinrich and Candela, 2014) (Fig. 2.8).

2.1.4 Source of metals in ore deposits: principles

Understanding the source of metals of ore deposits is paramount as such knowledge can assist in predicting or locating similar mineralized parts of the earth’s crust. Temperature, pressure, oxygen fugacity are important variables in understanding deposit genesis (Kotzer and
FIGURE 2.7 Schematic illustration of the recurrent association of ore deposit types with global tectonic settings, including active and passive continental margins, oceanic spreading centers including back-arc basins, as well as land surfaces, sedimentary basins, and hot spots in the interior of lithospheric plates. Labels A, B, C refer to major metal-transporting media and ore deposit types in Table 2.3. Source: From Heinrich, C.A., Candela, P.A., 2014. Fluids and ore formation in the Earth’s crust. In: Treatise on Geochemistry, pp. 1–28.
Kyser, 1995). Isotopic studies (Kotzer and Kyser, 1995; Legros et al., 2019), fluid inclusions (Richard et al., 2013; Brugger et al., 2016; Kyser, 2016; Xiong et al., 2018), and trace element geochemistry are important aspects to be considered in studying deposit genesis (e.g., Robb, 2005; Mungall, 2014). The principles underlying these studies, particularly those on geochemical techniques, are briefly discussed in this subchapter.

2.1.4.1 Pressure, temperature, chemical composition, and oxygen fugacity

Pressure, temperature, chemical composition, and oxygen fugacity ($f(O_2)$) are critical parameters useful in understanding ore deposit characteristics and processes that lead to ore generation and they can assist in identifying correct environment(s) for exploring potential minerals (Legros et al., 2019). In the context of chemical composition for example, most highly evolved alkaline intrusives do not host uranium deposits because they do not evolve to concentrate uranium in their differentiates (Kotzer and Kyser, 1995; Richard et al., 2013; Xiong, et al., 2018).

Regarding oxygen fugacity, Kress and Carmichael (1991) show that the Fe_3O_5/FeO ratio of melts is linked to its oxygen fugacity and can be estimated by the empirical relationship:
log f_{O_2} = log \left\{ \exp \left[\frac{\left(\ln \left(\frac{\text{Fe}_2\text{O}_3}{\text{Fe}_3\text{O}_4} \right) - \frac{b}{T} - c - \sum_i^n d_i X_i \right)}{a} \right] \right\} \tag{2.2}

where $a = 0.207$; $b = 12,980$; $c = -6.115$. Temperature T is in Kelvin and X_i is between 0 and 1 calculated from oxides as wt.% (Liao et al., 2016).

Further, in silicate magma and in ideal cases, oxygen fugacity is equal to its partial pressure (e.g., Evans et al., 2017) and positively correlated with temperature, T (Lindsley, 1991). Fig. 2.9 illustrates how oxygen fugacity can be related to mineral assemblage buffers such as fayalite–magnetite–quartz (FMQ), nickel–nickel oxide, that is, Ni–NiO, wüstite–magnetite (WM), iron–wüstite (IW); quartz–iron–fayalite (QIF), and hematite–magnetite (e.g., Chou, 1978; Lindsley, 1991; Frost et al., 1988; Ablay et al., 1998).

Mineral assemblage buffers are assemblages of minerals or compounds that constrain oxygen fugacities as a function of temperature (Lindsley, 1991). If a rock contains pure minerals that constitute a redox buffer (e.g., magnetite–hematite, nickel–nickel oxide, FMQ, WM, IW, QIF), then the oxygen fugacity of equilibration is defined by one of the curves in Fig. 2.9 (Chou, 1978; Lindsley, 1991; Frost et al., 1988). For other rocks with suitable minerals, oxygen fugacities can be calculated, and the redox
conditions that are obtained from calculation be compared by the fugacity–temperature diagram in Fig. 2.9 (e.g., Lindsley, 1991).

Oxygen fugacity strongly influences the crystallization sequences and composition of crystallizing minerals (Liao et al., 2016). Preservation of diamonds during transport from the mantle to the surface is estimated by assessing the oxygen fugacity of the magma (Moon et al., 2006). Highly oxidized intrusions and economic ore deposits are commonly associated with relatively higher oxygen fugacity values (Trail et al., 2012; Zhou et al., 2018). For example, the oxygen fugacity value of ΔFMQ $+2$ averaging between $+4.50$ and $+7.12$ is associated with medium-sized to super large-sized porphyry Mo deposits in the East Xing’an–Mongolian Orogenic Belt and below which the deposits are small (Zhou et al., 2018). It should be emphasized here that not all mineral deposits are associated with increase in oxygen fugacity as some minerals would be deposited when oxygen fugacity decreases. This is because oxygen fugacity is not the only control of mineral deposition (e.g., Chou, 1978). Other factors that control mineral deposition are pressure, temperature pH, Eh, sulfur fugacity, etc. (Fig. 2.10). For example, gold mostly occurs as AuCl$_2$ in a system with temperature higher than 400°C (Gammons and Williams-Jones, 1997; Zhu et al., 2011), but as temperature decreases (the primary mechanism), gold is deposited (Zhu et al., 2011). At lower temperatures, Au(HS)$_2$ is the dominant

![Diagram](image.png)

Applied Geochemistry
phase, and the maximum solubility exists in the vicinity of the $\text{H}_2\text{S} - \text{HS}^- - \text{SO}_4^{2-}$ equilibrium point and with the decline of oxygen fugacity, the Au–S complex breaks down leading to gold precipitation (Cooke and Simmons, 2000; Robb, 2005; Zhu et al., 2011):

$$2\text{Au(HS)}_2^- + \text{H}_2\text{O} \rightarrow 2\text{Au} + 4\text{HS}^- + 2\text{H}^+ + 0.5\text{O}_2$$

$$2\text{Au(HS)}_2^- + 8\text{H}_2\text{O} \rightarrow 2\text{Au} + 4\text{SO}_4^{2-} + 4\text{H}^+ + 8\text{H}_2$$

$$\text{FeCO}_3 + \text{Au(HS)}_2^- = \text{FeS}_2 \text{ pyrite} + \text{CO}_2 + \text{H}_2\text{O} + \text{Au} \quad \text{(Zhu et al., 2011)}$$

Iron sulfides monitor the sulfur fugacity just like how Fe–Ti oxides monitor oxygen fugacity in rocks (Frost and Frost, 2014). With increasing temperature, or at low sulfur fugacities, pyrite breaks down to pyrrhotite by the reaction:

$$(1-x) \text{FeS}_2 = \text{Fe}(1-x)\text{S} + \left(\frac{1}{2-x}\right)\text{S}_2 \quad \text{(2.3)}$$

This relationship indicates that, whereas pyrite may be stable in some relatively low-temperature rocks such as granites, pyrrhotite is the only sulfide found in high-temperature rocks such as basalt and gabbro.

The concentration of gold in potentially ore-forming solutions is a function of the distribution of sulfur species. For temperatures of 200°C–400°C, pressures of 200 MPa and near-neutral pH, Au(HS)$_2$—is the dominant gold–hydrosulfide complex (Shvarov and Bastrakov, 1999; Phillips and Evans, 2004). Thus sulfur is one of the key elements trapped in fluids during movements of hydrothermal fluids as a function of temperature, pressure, and pH (e.g., Phillips and Evans, 2004; Frost and Frost, 2014). Trisulfur ion, (S$^{-3}$), recently discovered in laboratory experiments (Pokrovski and Dubessy, 2015), may account for up to 10% of total dissolved sulfur (S$_{\text{tot}}$) at 300°C–500°C in fluids from arc-related magmatic–hydrothermal systems, and more than 50% S$_{\text{tot}}$ at 600°C–700°C in S-rich fluids produced via prograde metamorphism of pyrite-bearing rocks (Steudel and Steudel, 2013; Pokrovski and Dubessy, 2015). In addition, the trisulfur ion may favor the mobility of sulfur itself and associated metals (Au, Cu, Pt, and Mo) in geological fluids over a large range of depth and provide the source of these elements for orogenic Au and porphyry–epithermal Cu–Au–Mo deposits (Chivers, 1974; Steudel and Steudel, 2013; Pokrovski and Dubessy, 2015).

2.1.4.2 Fluid inclusions

Fluid inclusions are microscopic pockets of gas or liquids trapped within minerals (Craig and Vaughan, 1981; Sun et al., 2015; Corral et al., 2017; Fig. 2.11). The pockets may contain information on the original
physical and chemical conditions at which the source rock was formed (e.g., Viter et al., 2013) and how the transportation—deposition mechanism of ore-forming fluids (in hydrothermal deposits) acted (Bodnar et al., 2014). The fluid inclusions can also constrain geochemical models used to investigate geochemical processes (Bertelli et al., 2009). Fluid inclusions, when trapped within crystals during initial growth from solution or during total recrystallization, are called primary inclusions or if recrystallization of the fluid inclusions is localized along fractures at some later time, they are referred to as secondary inclusions (Craig and Vaughan, 1981). In fluid inclusion studies therefore the fundamental task is to study the nature of fluids included or trapped by the minerals during alteration and mineralization processes (Trail et al., 2009, 2012; Xiong, et al., 2018).

FIGURE 2.11 Images of sulfide inclusion in an olivine phenocryst of Manus glass under (A) reflected light and (B) and transparent light. Only one big sulfide globule is clearly identified under reflected light, which seemingly indicates sulfide saturation. This grain is actually associated with fluid inclusions as shown under transparent light. The unique composition of sulfides in Manus glasses (low Ni, Pt, etc.) may be plausibly interpreted by sulfides crystallized from magmatic fluids (Sun et al., 2015).
2.1.4.3 Radiogenic and nonradiogenic (stable) isotopes

Isotopes are used in bedrock geology, archeology, forensics, food and beverage industry, and environmental sciences. The focus of this book and in particular this subchapter is on the application of isotopes in the field of geology, more especially in understanding the geodynamics of rocks, the ore deposit sources, and age of rocks and their associated mineral deposits.

The U–Pb (from sphalerite) and Re–Os (from molybdenite) are examples of sets of radiogenic elements that can be used to understand the geodynamic setting of some mineral deposits (e.g., Robb, 2005; Dai et al., 2009) and their age when properly employed. For instance, Dai et al. (2009) use the stable isotopes of sulfur ($\delta^{34}S$: 3.3‰–8.0‰) to predict that a mixed crust–mantle system was responsible for the metal ore source in the Mo (Fe) deposit Xiaojiayingzi, China. Furthermore, using the same data, they propose an early stage of subduction of the Paleo-Pacific plate beneath the Eurasian Block as related to the geodynamic setting of that deposit. Casa et al. (2003) employ a similar approach in determining the source of gold in Central Italy. They propose that the origin of gold in Ponte San Pietro deposit may be related to leaching of metapelites/phyllites derived from pelitic rocks containing some amount of sulfur-bearing organic matter. The Co, Ni, Mn, as well as the $\delta^{34}S$ data ($\delta^{34}S$ values of up to 7.0‰), suggest a different origin for the phyllite-hosted marcasite, the Ponte San Pietro quartz-vein-hosted pyrite, and for gold occurrences (see Table 2.4).

TABLE 2.4 Distribution of elements, element ratios, and $\delta^{34}S$‰ in marcasite within phyllites of the Verrucano formation (T–D samples) and in vein-hosted pyrite from Ponte San Pietro deposit, Central Italy.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au</th>
<th>Co</th>
<th>Ni</th>
<th>Mn</th>
<th>As</th>
<th>Co/Ni</th>
<th>$\delta^{34}S$‰</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-D1</td>
<td>424</td>
<td>41</td>
<td>56</td>
<td>390</td>
<td>236</td>
<td>0.73</td>
<td>+ 2.5</td>
</tr>
<tr>
<td>T-D2</td>
<td>54</td>
<td>43</td>
<td>62</td>
<td>400</td>
<td>182</td>
<td>0.69</td>
<td>+ 7.0</td>
</tr>
<tr>
<td>T-D3</td>
<td>338</td>
<td>45</td>
<td>60</td>
<td>300</td>
<td>187</td>
<td>0.75</td>
<td>nd</td>
</tr>
<tr>
<td>T-E3</td>
<td>7400</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>+ 0.8</td>
</tr>
<tr>
<td>T-E4</td>
<td>1400</td>
<td>26</td>
<td>26</td>
<td>10</td>
<td>7500</td>
<td>1.0</td>
<td>+ 1.9</td>
</tr>
<tr>
<td>T-E5</td>
<td>2000</td>
<td>32</td>
<td>22</td>
<td>8</td>
<td>8500</td>
<td>1.45</td>
<td>nd</td>
</tr>
<tr>
<td>T-E6</td>
<td>17,000</td>
<td>47</td>
<td>29</td>
<td>13</td>
<td>71,000</td>
<td>1.62</td>
<td>nd</td>
</tr>
<tr>
<td>T-E8</td>
<td>21,000</td>
<td>28</td>
<td>18</td>
<td>16</td>
<td>8100</td>
<td>1.55</td>
<td>nd</td>
</tr>
</tbody>
</table>

Element values are given in ppm, except for Au in ppb, nd, not determined.

The expression $\delta^{34}\text{S} = \chi_{\%}$ means that ^{34}S is in parts per thousand and expressed relative to the most abundant sulfur isotope $\delta^{32}\text{S}$ (e.g., Ridley, 2013), that is:

$$\delta^{34}\text{S} = \left[\frac{\left(\frac{^{34}\text{S}}{^{32}\text{S}}\right)_{\text{sample}} - \left(\frac{^{34}\text{S}}{^{32}\text{S}}\right)_{\text{standard}}}{\left(\frac{^{34}\text{S}}{^{32}\text{S}}\right)_{\text{standard}}}\right] \times 1000 \quad (2.4)$$

It is worth noting that in nature, the stable sulfur isotopes ^{32}S, ^{33}S, ^{34}S, and ^{36}S are approximately 95%, 0.75%, 4.2%, and 0.02%, respectively. The standard for sulfur isotope ratio stated in Eq. (3.3) is of iron meteorite and mantle-derived sulfur and has $\delta^{34}\text{S}$ values within a narrow range of 0% ± 1% (Ridley, 2013).

Isotopes of H and O can be used to tell about the origin of hydrothermal fluids as to whether or not they are from seawater, meteoric water, magmatic water, connate water, metamorphic water, or from mixed sources in the earth’s crust that could have been responsible for the mineralization in question (e.g., Robb, 2005; Corral et al., 2017). The plot of hydrogen (δD permil) versus oxygen ($\delta^{18}\text{O}$ permil) isotopic ratios for various water types have been shown in Fig. 2.12. Note from that plot the linear meteoric water line ($\delta\text{D} = 8 \times \delta^{18}\text{O} + 10$) as well as the standard mean seawater values, standard mean ocean water (SMOW; δD permil = 0, $\delta^{18}\text{O}$ permil = 0). Thus one has to analyze from the ore samples, the values of δD and $\delta^{18}\text{O}$ and see where they plot in Fig. 2.12 for establishing the source of hydrothermal fluids. As it is always not easy to date the ore itself due to the absence of datable material, dating is done by using nonore materials associated with the ore. The plot of $^{143}\text{Nd}/^{144}\text{Nd}$ versus $^{87}\text{Sr}/^{86}\text{Sr}$ has been used by White and Patchett (1984) to characterize island arc volcanic materials of the South Sandwich, Lesser Antilles, Aleutians, Marianas, Philippines, Taiwan, Banda, and Sunda arcs (Fig. 2.13).

Further, the plot of $\delta^{18}\text{O}$ ($\%$) versus $\delta^{34}\text{S}$ ($\%$) for the Cerro Quema Au–Cu deposit (Azuero Peninsula, Panama) show that the fluid in the magmatic–hydrothermal system was sulfide dominant ($\text{XH}_2\text{S} = 0.69$) and the sulfur was of magmatic origin ($\delta^{34}\text{S}_{2\text{SS}} = -0.5\%$) but that variable $\delta^{18}\text{O}$ at constant $\delta^{34}\text{S}$ of alunite and barite, and $\delta^{18}\text{O}$ values of fluids being in equilibrium with vuggy quartz (−2.3 to 3.1%) suggest dilution of magmatic fluid by meteoric waters (e.g., groundwater) during alteration/mineralization (Corral et al., 2017). The $\delta^{13}\text{C}$ isotopic compositions for the DRC diamonds show values from −12.5% to −1.9% implying near mantle-like values (Kosman et al., 2016).

Deuterium–oxygen–carbon (D–O–C) isotopic systematics have been used by some scholars such as Aliyari et al. (2009) to study the hydrothermal deposits.
FIGURE 2.12 (A) The major types of liquid water that exist at or near the earth’s surface. (B) Plot of hydrogen (δD permil) and oxygen (δ^{18}O permil) isotopic ratios for various water types. SMOW is defined to be zero for both δD and δ^{18}O. Some ore-forming environments are clearly related to mixed fluid reservoirs; in the cases shown (see A and B) mixing of meteoric and connate fluids has taken place. Source: After Taylor, H.P., 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, third ed. John Wiley & Sons, New York, pp. 229–302. From Kretschmar, U., McBride, D., 2016. Understanding hydrothermal Systems, In Ulrich Kretschmar and Derek McBride (eds), The Metallogeny of Lode Gold Deposits, pp 151–198, First Edition Elsevier, 345p.
2.1.4.4 Rare earth elements

2.1.4.4.1 Geochemistry and classification

REEs as indicated by blue boxes in Fig. 2.14 are a set of chemical elements in the periodic table, specifically the 15 lanthanides plus scandium.
(Sc) and yttrium (Y), Sc, and Y are considered REE since they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties; their ability to readily discharge and accept electrons, make them indispensable and nonreplaceable in many electronic, optical, magnetic, and catalytic applications (e.g., Gaffney and Marley, 2018). Names of elements along with their symbols are shown in Table 2.5.

REEs are classified into two subgroups: LREEs comprising the first six elements of the Lanthanite series La, Ce, Pr, Nd, Pm, Sm (atomic numbers 57–62); and the heavy rare earth elements (HREE), comprising nine elements Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu (with atomic numbers 63–71), and the 10th element yttrium despite its low atomic weight (Fig. 2.14), Y is classified with the HREE because its properties are closer to those of the HREE subgroup than to LREE (www.tasmanmetals.com/s/RareEarth.asp).

Despite their name, the REEs are in fact not especially rare. Each one of the REE is more common in the earth’s crust than the elements Ag, Au or Pt, while Ce, Y, Nd, and La are more common than Pb (Fig. 2.14). Thulium and Lu are the least abundant REEs with crustal abundance of approximately 0.5 ppm.

The REEs, being capable of readily accepting and releasing electrons, are never found as free metals in the earth’s crust and all their naturally occurring minerals consist of mixtures of various REEs with other metals and nonmetals. For example, garnet accommodates the HREE more than the LREE, and orthopyroxene and hornblende do so to a lesser degree. Sphene and plagioclase accommodate more LREE, and Eu$^{2+}$ is strongly partitioned into plagioclase (e.g., Pun et al., 1997). Plotting concentration of the REE (normalized to mantle values) as the ordinate (y-axis) against increasing atomic number (as their degree of compatibility increases from left to right across the diagram), we can be able to characterize the genetic history of various rocks and ore deposits.

REE behave as incompatible elements, that is, they prefer magma over crystalline phases during crystal–liquid separation—be it partial melting or crystallization. As per Sen (2014), Sm and Nd behave as incompatible elements but Nd is slightly more incompatible than Sm. 143Nd is a daughter isotope produced by α-decay of the radioactive isotope 147Sm. Similar to the Sr system, Nd isotopic ratios are expressed in terms of 147Sm/144Nd (parent) and 143Nd/144Nd (daughter). Partial melting results in a greater Sm/Nd ratio of the residuum because Nd is more incompatible than Sm. It follows that as time progresses rocks crystallizing from such partial melts will evolve to lower 143Nd/144Nd than the residue because the residue will have a greater amount of 147Sm/144Nd ratio acquired during the partial melting event. Because of the differential change in Sm/Nd relative to Rb/Sr during partial
TABLE 2.5 Symbols of geochemical elements along with their names.

<table>
<thead>
<tr>
<th>Atomic number</th>
<th>Element symbol</th>
<th>Name</th>
<th>Atomic number</th>
<th>Element symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>Hydrogen</td>
<td>60</td>
<td>Nd</td>
<td>Neodymium</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>Helium</td>
<td>61</td>
<td>Pm</td>
<td>Promethium</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>Lithium</td>
<td>62</td>
<td>Sm</td>
<td>Samarium</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>Beryllium</td>
<td>63</td>
<td>Eu</td>
<td>Europium</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Boron</td>
<td>64</td>
<td>Gd</td>
<td>Gadolinium</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>Carbon</td>
<td>65</td>
<td>Tb</td>
<td>Terbium</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>Nitrogen</td>
<td>66</td>
<td>Dy</td>
<td>Dysprosium</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>Oxygen</td>
<td>67</td>
<td>Ho</td>
<td>Holmium</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>Fluorine</td>
<td>68</td>
<td>Er</td>
<td>Erbium</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>Neon</td>
<td>69</td>
<td>Tm</td>
<td>Thulium</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>Sodium</td>
<td>70</td>
<td>Yb</td>
<td>Ytterbium</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>Magnesium</td>
<td>71</td>
<td>Lu</td>
<td>Lutetium</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>Aluminum</td>
<td>72</td>
<td>Hf</td>
<td>Hafnium</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>Silicon</td>
<td>73</td>
<td>Ta</td>
<td>Tantalum</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>Phosphorous</td>
<td>74</td>
<td>W</td>
<td>Tungsten</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>Sulfur</td>
<td>75</td>
<td>Re</td>
<td>Rhenium</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>Chlorine</td>
<td>76</td>
<td>Os</td>
<td>Osmium</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>Argon</td>
<td>77</td>
<td>Ir</td>
<td>Iridium</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>Potassium</td>
<td>78</td>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>Calcium</td>
<td>79</td>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>Scandium</td>
<td>80</td>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>Titanium</td>
<td>81</td>
<td>Tl</td>
<td>Thallium</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>Vanadium</td>
<td>82</td>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>Chromium</td>
<td>83</td>
<td>Bi</td>
<td>Bismuth</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>Manganese</td>
<td>84</td>
<td>Po</td>
<td>Polonium</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>Iron</td>
<td>85</td>
<td>At</td>
<td>Astatine</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>Cobalt</td>
<td>86</td>
<td>Rn</td>
<td>Radon</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>Nickel</td>
<td>87</td>
<td>Fr</td>
<td>Francium</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>Copper</td>
<td>88</td>
<td>Ra</td>
<td>Radium</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>Zinc</td>
<td>89</td>
<td>Ac</td>
<td>Actinium</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Atomic number</th>
<th>Element symbol</th>
<th>Name</th>
<th>Atomic number</th>
<th>Element symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Ga</td>
<td>Gallium</td>
<td>90</td>
<td>Th</td>
<td>Thorium</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>Germanium</td>
<td>91</td>
<td>Pa</td>
<td>Protactinium</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>Arsenic</td>
<td>92</td>
<td>U</td>
<td>Uranium</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>Selenium</td>
<td>93</td>
<td>Np</td>
<td>Neptunium</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>Bromine</td>
<td>94</td>
<td>Pu</td>
<td>Plutonium</td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>Krypton</td>
<td>95</td>
<td>Am</td>
<td>Americium</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>Rubidium</td>
<td>96</td>
<td>Cm</td>
<td>Curium</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>Strontium</td>
<td>97</td>
<td>Bk</td>
<td>Berkelium</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>Yttrium</td>
<td>98</td>
<td>Cf</td>
<td>Californium</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>Zirconium</td>
<td>99</td>
<td>Es</td>
<td>Einsteinium</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>Niobium</td>
<td>100</td>
<td>Fm</td>
<td>Fermium</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>Molybdenum</td>
<td>101</td>
<td>Md</td>
<td>Mendelevium</td>
</tr>
<tr>
<td>43</td>
<td>Tc</td>
<td>Technetium</td>
<td>102</td>
<td>No</td>
<td>Nebelium</td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>Ruthenium</td>
<td>103</td>
<td>Lr</td>
<td>Lawrencium</td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>Rhodium</td>
<td>104</td>
<td>Rf</td>
<td>Rutherfordium</td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>Palladium</td>
<td>105</td>
<td>Db</td>
<td>Dubnium</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>Silver</td>
<td>106</td>
<td>Sg</td>
<td>Seaborgium</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>Cadmium</td>
<td>107</td>
<td>Bh</td>
<td>Bohrium</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>Indium</td>
<td>108</td>
<td>Hs</td>
<td>Hassium</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>Tin</td>
<td>109</td>
<td>Mt</td>
<td>Meitnerium</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>Antimony</td>
<td>110</td>
<td>Ds</td>
<td>Darmstadtium</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>Tellurium</td>
<td>111</td>
<td>Rg</td>
<td>Roentgenium</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>Iodine</td>
<td>112</td>
<td>Cn</td>
<td>Copernicium</td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>Xenon</td>
<td>113</td>
<td>Nh</td>
<td>Nihonium</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>Cesium</td>
<td>114</td>
<td>Fl</td>
<td>Flerovium</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>Barium</td>
<td>115</td>
<td>Mc</td>
<td>Moscovium</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>Lanthanum</td>
<td>116</td>
<td>Lv</td>
<td>Livermorium</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>Cerium</td>
<td>117</td>
<td>Ts</td>
<td>Tennessine</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>Praseodymium</td>
<td>118</td>
<td>Og</td>
<td>Oganesson</td>
</tr>
</tbody>
</table>

Extracted from Fig. 2.14.
melting, the sign of the epsilon values for the Sm–Nd versus Rb–Sr systems means the opposite: positive ⁵Nd value means depleted, whereas positive ⁶Sr value means enriched composition (e.g., Sen, 2014; Kazemi et al., 2018).

Rocks from the primitive mantle have ⁵Nd = 0 and ⁶Sr = 0, whereas enriched igneous rocks have ⁵Nd <−2 and ⁸⁷Sr/⁸⁶Sr >0.705 and depleted igneous rocks have ⁵Nd of +6 to +10 and ⁸⁷Sr/⁸⁶Sr of 0.7025−0.703.

For kimberlites, although both Group 1 and Group 2 Kimberlites contain both compatible and incompatible elements, they can be distinguished from each other in the fact that Group 2 is enriched in LREE and depleted in Cr and Nb relative to Group 1 Kimberlites. The former is also H₂O rich, enriched in SiO₂, K₂O, Pb, Rb, and Ba (Sen, 2014).

References

Chivers, T., 1974. Ubiquitous trisulfur radical ion S\(^{2-}\). Nature 252, 32–33.

References

2. Types of ore deposits and their origin

Further reading

Geosurvey International GMBH, 1981. Synoptic map showing the gold potential of the Archean Greenstone Belts, scale 1:500,000.

Li, Y., Audétat, A., 2013. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: implications for the formation of Au-rich

