Calculus

Paper-II

Ву

Dr. Mahesh Puri Goswami

Assistant Professor

Department of Mathematics & Statistics Mohanlal Sukhadia University, Udaipur

SHREE NAVNEET

Index

	ZI IOCK	
S. No.	Title	page.
<u> </u>	N	2
2.	Asymptotes Multiple Points	13
3.	Curup Gracina - Cartesian	21
<u> </u>	Curve Gracing - Cartesian - Polar	39
4.	Pedal Equations	48
5.	Cowatwe	וד
6,	Gamma Function & Beta Function	107
7	Rectification	129
8.	Quadrative	145
9	Mean Value Theorem	159

MATHS

CALCULUS

ASYMPTOTES: Asymptote is an equation of a line which has finite distance from origin and distance of touch point from origin tends to infinity.

To find the asymptote of the curve
$$y = f(x)$$

Let rule eq. be $y = f(x) - 0$
Therefore, eq of tangent at (x, y) is
 $y - y = m(x - x)$

$$\frac{y - y}{dx} = \frac{dy}{dx} (x - x)$$

$$\frac{y - dy}{dx} + (y - x) - 2$$

of use skip asymptotes parallel to y axis then x→00.

dy does tends to infinity.

As a cockending to infinity, or > 00 dy and y-x are finite.

Let
$$\lim_{x \to \infty} dy = m$$

and $\lim_{x\to\infty} y-x \, dy = c$

$$\Rightarrow \lim_{x \to \infty} \left(\frac{y - dy}{x} \right) = \lim_{x \to \infty} \frac{c}{x}$$

$$\frac{1}{2} \lim_{x \to \infty} \frac{y - \lim_{x \to \infty} dy = 0}{x + 2}$$

O Diff- Calculus NK Publication	
1 Thtegral Calculus The Dr. Mp Groswami J.PH	Date:
	Page No:
Asymptote	
	The state of the s
Parallel Asymptote	1 Outlinus no dead
a axis parallel	Oblique Asymptotes
y axis parallel	y mx tc
	y may color
& you are finding the parallel	The state of the s
asymptotes to or ascis then	all eq of curve y - f(x)
put the coefficients of highest	of n degree.
hower of 20 = 0. That obtained	PROBLEM COLORS AND ADMINISTRATION AND ADMINISTRATION OF THE PROBLEM COLORS AND
	I Put x=1 and y=m in
eq. is parallel asymptote to x axis.	cowe eq. and then find
10 4-0 11/4 20-4- 0	9 n (m) =
If coefficient is constant then	\$ n-1 (m) =
there is no parallel asymptote	3
for X axis	$\phi_1(m) =$
Fox finding the parallel asymptote	
to y axis then put the coefficient	II for finding value of m put
of highest power of y=0. That	$\phi_n(m)=0$
parallel asymptoto	there O degree is n degree
Jaxue of coefficient in constant	equation. Therefore it
THE MAN HOUNDAND CONTRACTOR	has ATMOST n real
for y axis.	ocots.
	Case 1: if m are distinct
	then
A Walanta A	$C = -\phi_{m-1}(m) \qquad m = m_{\ell}$
	φ' _n (m)
	:. [y= m, x+c]
	where $\phi_n(m)$ is $\frac{d}{dm}\phi_n(m)$
	qm

If a curve has n degree equation then the curve
has ATMOST n asymptotes.
ATLEAST 0 asymptotes.
9.e. 0 ≤ no. of asymptotes ≤ n
Contdi
Oblique Asymptotes
y = mx + c
Let eq of couve $y = f(x)$ of n degree.
And the second and the second
I put x=1 and y=m in curve eq & then find
$ \Phi n(m) =$
Φn-1 (m) =
\$, (m) =
11 (14)
I For finding value of m, put $\phi_n(m) = 0$
tere Dis & n degree eq. Therefore it has atmost neveal
stoots.
Case 1: if m are distinct then
1 0 - (200)
$\phi_n(m)$
$ \frac{\partial}{\partial x} \left[y = m_1 x + C \right] \qquad \text{where } \Phi_n(m) = \frac{\partial}{\partial m} \Phi_n(m) $
$\frac{1}{\sqrt{m}}$
Case 2: If worts are repeated say we = 11
then for c. (2 d"//2) say m, = m2
then for c, $\frac{C^2}{2!} \phi_n''(m) + C \phi_{n-1}(m) + \phi_{n-2}(m) = 0$
$\int_{\mathbb{R}^n} dt = m_1 = m_2 + m_3 = m_1$
Let $m_1 = m_2 = m_3$ then for c
$\frac{c^{3}}{3!} \phi_{n}^{1}(m) + \frac{c^{2}}{2!} \phi_{n-1}^{n}(m) + c \phi_{n-2}^{\prime}(m) + \phi_{n-3}(m) = 0$
l m≡m₁-

Date: On (m) =0 Page No: on (m)=0 Pn-1(m) #0 : Asymptote will not exist. 17/1/2020 find the asymptote of the curve $\frac{x^3 + 2x^2y - 2cy^2 - 2y^3 + xy - y^2 = 1}{\text{coefficients of highest power of } x \text{ and } y \text{ are}$ constants. Therefore, there is no parallel asymptotes Now for oblique asymptote: Put x=1 and y=m in given curve eq., we have $\phi_3(m) = 1 + 2m - m^2 - 2m^3$ \$ (m) = m-m2 $\Phi,(m)=0$ For finding value of m fut $\phi_3(m) = 0$ $2m^3 + m^2 - 2m - 1 = 0$ (2m+1) $(m^2-1)=0$ (2m+1)(m-1)(m+1)=0Now, $\phi_3'(m) = 2 - 2m - 6m^2$ for m =--1 $l = - \phi_2(m) = -(m - m^2)$ $\phi_3'(m)$ 2-2m-6m²

Date: Page No:

Therefore, asymptote for m = -1 is y = -x-1

= xfy+1=0

Tou m=1,

 $-(m-m^2)$ $(2-2m-6m^2)$ $C = - \phi_2(m)$ \$3' (m)

Asymptote for m=1 is

for m = -1

 $C = -\phi_2(m)$

 $\frac{\phi_3'(m)}{= -(m-m^2)} \frac{m=-1/2}{(2-2m-6m^2)} m=-1/2$

 $=-\left(-1,-1\right)$ \div $\left(2+1-6\right)$

Therefore asymptote for m=-1/2 is

y = -1 x + 12y + x -1=0 व

x + 2y - 1 = 0

C+X+Ox

thus, asymptote of given curve are x+y+1=0, x+2y-1=0

```
of the cure
         y^3 - xy^2 - x^2y + x^3 + x^2 - y^2 - 1 = 0
 e coefficient of highest power of or and y over constant.
   Therefore there is no parallel asymptote to pais
- Now for oblique asymptotes put so = 1 and y = m is given
    curve eq., we have
         (m) = m^3 - m^2 - m + 1
        \phi_2(m) = 1 - m^2
     \phi_1(m) = 0
   for finding the value of m, put $3(m) =0
           m^3 - m^2 - m + 1 = 0
              m^2(m-1) - 1(m-1) = 0
             (m^2-1)(m-1)=0 \Rightarrow (m-1)(m+1)(m-1)=0
            = m=1,1,-1
  \exists m = 1, \quad c = \phi_2(m) = 1 - m^2
                \phi_{3}(m) \mid m=-1 3m^{2}-2m-1 \mid m=-1
           y = m \infty \Rightarrow y = -\infty
                      = x+y=0
  For m=1, Repeated Roots
          \frac{c^2}{2!} \phi_3''(m) + \frac{c}{4!} \phi_2'(m) + \phi_1(m) \Big|_{m=1} = 0
          \frac{C^2}{2} (6m-2) + C(-2m) + 0 |_{m=1} = 0
           2c^2 - 2c = 0 \Rightarrow c(c-1) = 0 \Rightarrow c = 1,0
   corresponding asymptotes for m=1 are:
             Y=m&+c = y=x+0
                    and y = x + 1
```

Date: Page No:

```
Thus asymptote of given curve are
     x+y=0, x-y+1=0
```

Find the asymptotes of the curve $x^3 - 5x^3y + 8xy^2 - 4y^3 + x^2 - 3xy + 2y^2 - 15 = 0$ dince coefficients of highest power of x & y over constant, so there is no parallel asymptotes to Axis Put x=1 y=m

Pa(m) = 1-5m+ 8m2-4m3 $\Phi_{1}(m) = 1 - 3m + 2m^{2}$ Ø, (m) = 0

For values of m,

$$\phi_3(m) = 0$$

$$1 - 5m + 8m^2 - 4m^3 = 0$$

$$-4m^3 + 8m^2 - 5m + 1 = 0$$

)-4m3+8m2-5m+1 -4m2+4m-1 -4m3 +4m2

4m2-5m+1 4 m2 - 4 m

=> -4m3+8m2-5m+1=0

= $(-4m^2+4m-1)(m-1)=0$ $(2m-1)^2(m-1)=0$

= m=1/2,1/2,0

For
$$m = \frac{1}{2}$$
, $\frac{c^2 + \phi_3''(m) + c + \phi_2'(m) + \phi_1(m)}{2!} = 0$
 $\frac{c^2 + \phi_3''(m) + c + \phi_2'(m) + \phi_1(m)}{2!} = 0$

$$\frac{c^2}{2} \left(16 - 24m \right) + C \left(-3 + 4m \right) + 0 = 0$$

 $\frac{1}{2} \frac{2c^2 - 3c + 2c = 0}{2} + \frac{1}{2} \frac{2c^2 - c}{2} = 0 \Rightarrow \frac{c = 1}{2}$

Date: Page No: asymptotes for m=1/2 when c=1/2,0 y = x +1 x-2y+1=0 $C = \frac{\phi_2(m)}{\phi_2(m)} = \frac{1 - 3m + 2m^2}{-5 + 16m - 12m^2}$ MEI, = 1-3+2 = 0-5+16-12so, Asymptotes are x-2y+1=0, y-x=0, x-2y=0 $\frac{2x-a^2-b^2=1}{x^2-y^2}$ $a^{2}y^{2} - b^{2}x^{2} - x^{2}y^{2} = 0$ 4 degree curve $b^2 = y^2$ Intersection of the curve of its Asymptotes. Let y=f(a) be an degree curve, since we know that a line cut e the curve of n degree at n points since in asymptotes, 2 cut pts. converted into a touch pt at infinity (a). Therefore, n-asymptoton cut n-2 points of the given curve. If curve has m asymptotes then total no of intersection pts. = m(n-2) curre et n degree whose asymptotes equation $P_1 = 0$ Et of cueure P2=0 then the eq. of the curve which passes through intersection pts. of curves and its asymptote is P1 + XP2 = 0 by fulling value of A, we obtain the oreq. curve eq.

Date:
Page No:
I show that the asymptotes of the cubic curve &
$x^3 - 2y^3 + xy(2x-y) + y(x-y) + 1 = 0$
cut the curve again in 8 pts. which lie on the strought line
x-y+1=0
Since highest flower of x and y has constant coefficients.
:. there is no parallel asymptotes to axis.
For oblique asymptotes put or =1, y=m in curve eg
$\phi_3(m) = 1 - 2m^3 + 2m - m^2$
$\phi_2(m) = m - m^2$
$\phi_1(m) = 0$
for value of m, put of (m) = 0
$2m^3+m^2-2m-1=0$
$(m-1)(2m^2+3m+1)=0$
M = -1, -1/2
$for m=-1$, $c=-\phi_2(m) = -(m-m^2) = 2 = -1$
$\phi_3'(m) m=-1 -6m^2+2-2m -2$
for $m=1$ $c=0$ $3(x+y+1=0)$
$for m = -\frac{1}{2} \qquad (= -\frac{1}{2} - \frac{1}{2} - \frac{1}{2})$
For $m = -\frac{1}{2}$, $c = -\frac{(-\frac{1}{2} - \frac{1}{2})}{-\frac{3}{2} + 2 + 1} = \frac{3}{4} \times \frac{2}{3} = 1$
$\int_{2}^{\infty} \frac{1}{2} = \frac{x+1}{2} \Rightarrow \left[x+2y-1=0\right]$
Therefore total no. of Asymptotes = 3
Thu, total no. of intersection by
Thus, total no. of intersection pts. of asymptotes. of curue = m(n2)
1. Al shoot to to.
Thou, combined eq. of Augmentate: - (x+y+1) (x-y) (x+2y-1) = 0
(x+y+1)(x-y)(x+2y-1)=0
7 - 1 - 0

Data: Page No: $\frac{1}{2} \left(\frac{x^2 - xy + xy - y^2 + x \cdot y}{x^2 + x \cdot y} \right) \left(\frac{x + 2y - 1}{x + 2y - 1} \right) = 0$ + x3-xy2+ x2-yx+ 2yx2-2y3+2yx-2y2-x21y2 + x3-243+ 2x2y-sey2-42+xy-sety=0 New O-O we get $(+x-y=0) \Rightarrow x-y+1=0$ which is required curve eq. which passes through intersection 4 wwe in prove that asymptotes of the come $xy(x^2-y^2) + 25y^2 + 9x^2 - 144 = 0$ cut it again in 8 pts line on an ellipse whose eccentricity is 415. Parallel asymptote x=0, y=0 Given cusoe: x3y-xy3+25y2+9x2-144=0 for oblique, x=1 y=m \$2(m) = m - m3 +25m \$3(m) = 0 the value of m, put $\phi_{y}(m) = 0$ $m(1-m^2)=0$ m(1-m) (1+m) =0 m=0,1,-1 fr m=1 c = - \phi_3(m) = 0 φ4'(m) y = x $\Rightarrow x-y=0$ ykalimib for m = -1, d xty=0

Date:

Page No:

Asymptotes of the given curve

214=0

No. of intersection pts. = 4(4-2) = 8

Asymptetes but the given curve at 8 pts..

combined eq. of asymptote is

\$ 9x2+ 25y2= 144

 $b^2 = \alpha^2 (1 - e^2)$

Hence Proved

Chapter-4 Date: 18/1/2020 Page No: Muttiple Points & Curve Lucing. convexity and concavity of a curve Ci ine 3547 38 line offer al concare 0 Convex If curve below the tangent then the curve is said to be concave and if the tang curve above the tangent then the curine, is said to be CONVEX A come y = f(x) is said to be CONVEX west X axis, if and the curve is convex west y axis, 2 d2x >0 turne y= f(x) is said to be concave went X axis if you and the number is concave west y-axis 2 d2x <0 dy 2

Date: Page No:	
# A curve $y = f(x)$ is said to be convex went x axis interval $[a, b]$ if	يد لله
$\frac{d^2y}{dx^2} > 0 \qquad \forall [a,b]$	
111 A cuwe y= f(x) is said to be concave west X axis	
$\frac{\partial}{\partial x^2} \left(\begin{array}{c} d^2y & \langle 0 \rangle & \forall [a,b] \\ \end{array} \right)$	
v k and a second of the	
POINT OF INFLEXION	
A point P is said to be a point of inflexion if one side	Ol Hu
point of the curve is convex and in another side curve	
concave if	
one side d2y so and d2y so on another se	de.
dx^2 dx^2	

i.e. a point P is said to be point of inflexion $\frac{d^2y}{dx^2} = 0 \quad \text{and} \quad \frac{d^3y}{dx^3} \neq 0 \quad \text{at } P.$

In general, a point P will be pt of interior if f''(x) = f'''(x) = f'''(x) = 0

 $f(n+1)(x) \neq 0$, where n's even no

Example - Find the point of inflexion of the curve $y = [log \xi x]$ $\frac{dy}{dx} = 3 \left(log x \right)^{2} \left(\frac{1}{x} \right)$

$$\frac{d^{2}y}{dx^{2}} = 3 \left[\frac{-1}{x^{2}} \left(\log x \right)^{2} + \frac{2}{x^{2}} \log x \right]$$

Date: Page No: loge - logx loge = logx] pt of inflexion, 3 log x tog $\log x = 0$ lo either $\frac{\log \left(\frac{e^2}{x} \right)}{x}$ 7 x= e,2 For X=1 $(\log x)^3 = 0$ (e2,8) log_

Therefore pts (1,0) & (1,0) are pts of inflexion of the

Find the manger of the values at x in which the curve $y = 3x^5 - 40 \times^2 + 3x - 20$ is concave by convex 4400, find the fits of inflexion. $\frac{dy}{dx} = 15 \times^4 - 120 \times^2 + 3$

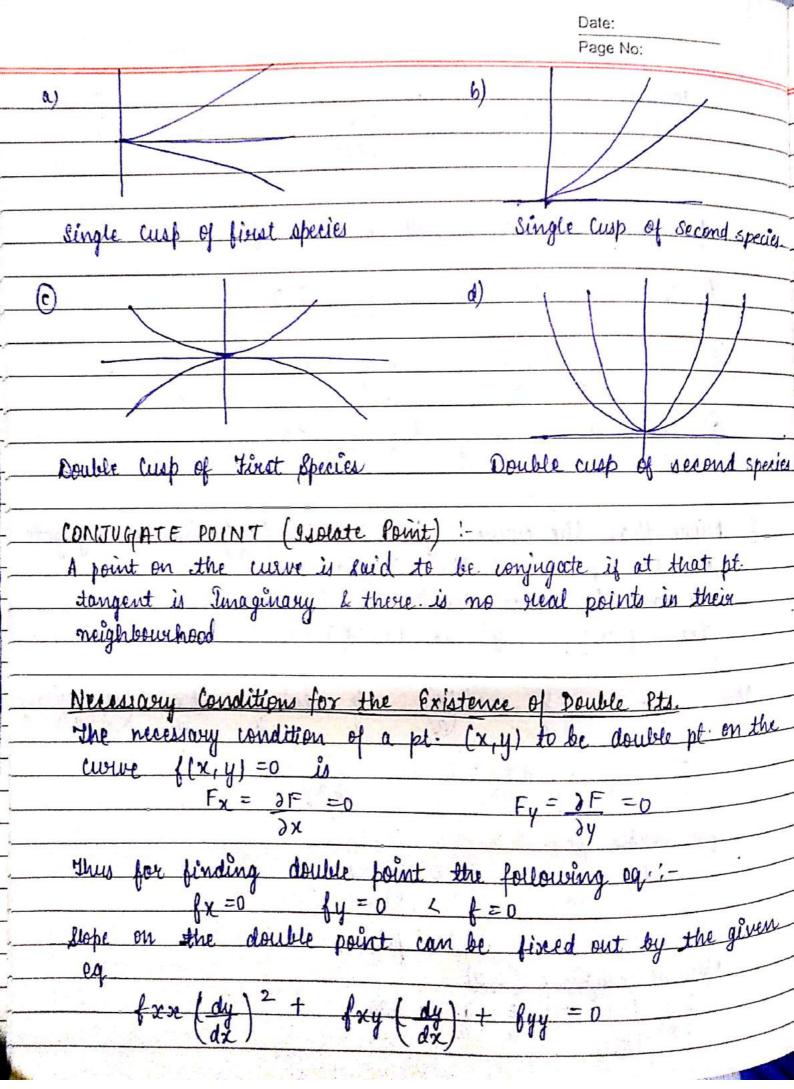
 $\frac{d^2y}{dx^2} = 60x^3 - 940x \qquad \text{for concave}$

 $\frac{d^{3}y}{dx^{3}} = 180 x^{2} - 240$

 $\frac{d^2y}{dx^2} < 0$

For point of inflexion $\frac{d^2y}{dx^2} = 0$

60 or (x2-4) =0


= x = 0 x = ± 2

At 0, y = -20at +2, y = -238at -2, y = 198

Now at point P, $\frac{d^3y}{dx^3} = -240 \neq 0$

Therefore, P are the pts of inflexion. $\frac{d^2y}{dx^2} = 60 \text{ or } (x^2-y)$

	Date:
	Page No:
	+
-2	0 2
For convex,	$\frac{(2y)}{dx^2} > 0$ $(-2,0)$ $(2,0)$
A	19
for concave,	$\frac{d^2y}{dx^2} < 0 \qquad (-\infty, -2) v(0,2)$
312/12 112 23/12/12 11	and the state of t
1 man of the contract	A TRANSPORT OF THE PROPERTY OF
Multiple Point	Double Point)
ed point of the	rusure is said to be multiple point
if more than p	ne branches of the curve passes through
through the point	. corre passes mourign
* Double Point: - 1	point on the curve is said to be double
Joints is two page	when of the curve passes through that
point.	mas of are wine passes through that
· parrur	
COME FUADONAGELLES	
D SOME FUNDAMENTAL	DEFINITION L
are a distinct touche	nt on the curve is said to be NODE if there
amovice tange	nt at & branches of the curve
Q CUAL	this to the same of the same o
- A double point	on the curve is said to be cusp of both -
summelies of the cure	The mas since the trace parties.
A CONTRACTOR OF THE PARTY OF TH	1 cusp
	7 711
common Tangent	19 19 19 19 19 19 19 19 19 19 19 19 19 1
	Alaba and Age
	And And And Andrew Control of the second of
	100 100 100 100 100 100 100 100 100 100

Date:

Page No:

where $\int xx = \frac{3^2f}{3\pi y^2}$, $\int yy = \frac{3^2f}{3\pi y^2}$

 $fxy = \frac{3^2 f}{3y^2}$

A double point (x, y) will be Node if

O Node: [fry -4 txx byy] >0

1 cusp: - 82xy - 4 8xx byy =0

3 conjugate: - 62xy - 4 fxx byy (0

I know that the curve $y^2 = bx \tan(x)$ has a conjugate or node point at the origin

a and 6 haves unlike & like signs.

Let $f(x,y) = y^2 - bx \tan(\frac{x}{a}) = 0$

 $\frac{1}{3x^2} = -\frac{b}{a} \sec^2(x) - \frac{b}{a} \sec^2(x) - \frac{b}{a}$

 $\frac{\partial f}{\partial y} = 2y \qquad \frac{\partial^2 f}{\partial y^2} = 2 \qquad \frac{\partial^2 f}{\partial xy} = 0$

for double pt.

Put $\partial f = 0$ & $\partial f = 0$

16. (0,0) is a double point.

Now at origin (0,0)

 $\frac{\partial^2 f}{\partial x^2} \Big|_{[0,0]} = \frac{-b - b}{a} = \frac{-2b}{a}$

rde x

Date: Page No:

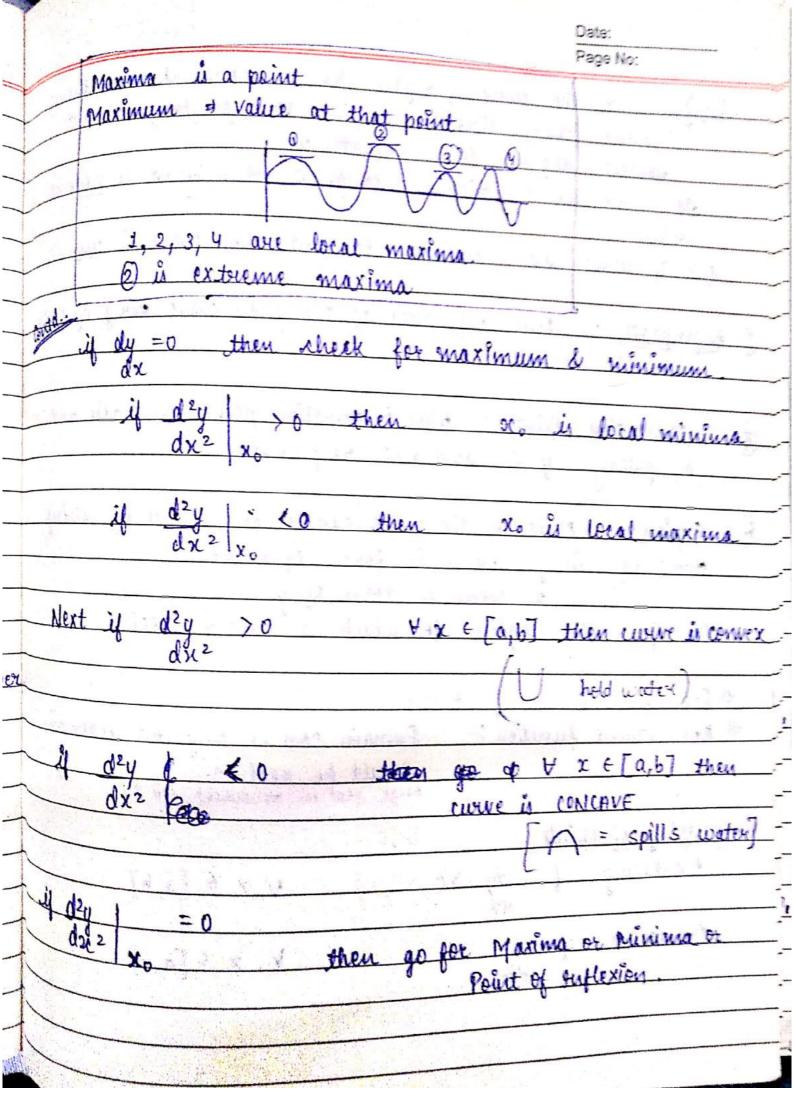
 $\frac{3y^{2}}{3y^{2}} | (0,0)$ Now $b^{2} - 4ac = (f(xy))^{2} - 4fxx fyy = 0 - 4x2(-2b)$ - 16b = 0

Here RHS of (1) > 0 if a and 6 have like signs & origin is node point


Again RHS of 1) < 0 if a and b have unlike signs (i) have & complex stoots.

Curve Tracing

THEORY OF CARTESIAN CURVE:-


- 1) Symmetry: Let eq. of curve is f(x,y) = 0
 - i) Symmetry about it axis: If f(x,y) = f(x,-y)is curve obtained equation has even power of y then the curve is symmetric about X axis.
 - ii) symmetry about y axis: If f(x,y) = f(x,y) \(\frac{1}{2} \). E.

 curve has even power of x then the curve
 is symmetric about y axis.
 - iii) symmetry about line y = x = -1 if (y, x) = f(x,y) then the curve is symmetric about y = x.

	Date:
	Page No:
iv) symmetric about line y = - or	
9 f(-4,-se) = f(x,y) then the	curve is
symmetric about y = - 50	`
(v) symmetric about X and Y axis:	
If $f(-x,-y) = f(x,y)$ then the	curve is symmetric
about both axis.	
vi) Symmetry about erigin: If fix;	-y) = f(x, y) therefore
vi) Symmetry aleun myon the curve	is symmetric in
opposite qua	deants
opposite que	
AT ATRICAN AND THE PROPERTY OF	100
	12116

	Page No:
2) Origin: - If the curve $f(x,y)=0$ has no constant origin. Now for lowest degree terms equate zero.	tangents, put
origin.	
And if curve has common langest then c	i i i
3 <u>hymptotes</u> : - Find asymptote of the given civ discussed methods.	we using by earlier
(a) Intersection <u>Points</u> : - Find intersection points by putting y=0 and x=0 respectively.	on X axis and Yax
B Region: - Region of the curve can be found on the curve eq. in y which is form of x or x which is form of y. Then find the sugglon for which x and y	ใหา
# Real function f: R -> R # Real valued function: Domain can be an	y but codomain
6 Plotting of Points	होती है।
Increasing, if $\frac{dy}{dx} > 0$ $\forall x \in$	[a,b]
Develosing, if ely to V x E	[a,b]

Date:	
Page	No:

Example: Shace the curve $y^2(a+x) = x^2(a-x)$ Let $b(x_0y) = y^2(a+x) - x^2(a-x) = 0$

- D symmetry :- since f(x, -y) = f(x, y)or since curve has even power of y therefore curve is symmetric about x axis.
- Design: Aince curve has no constant term therefore curve posses

 through origin.

 Since f(x,y) = ay2+ xy2-ax2+x3=0

Since $f(x,y) = ay^2 + xy^2 - ax^2 + x^3 = 0$ = $x^3 + xy^2 + a(y^2 - x^2) = 0$ — @

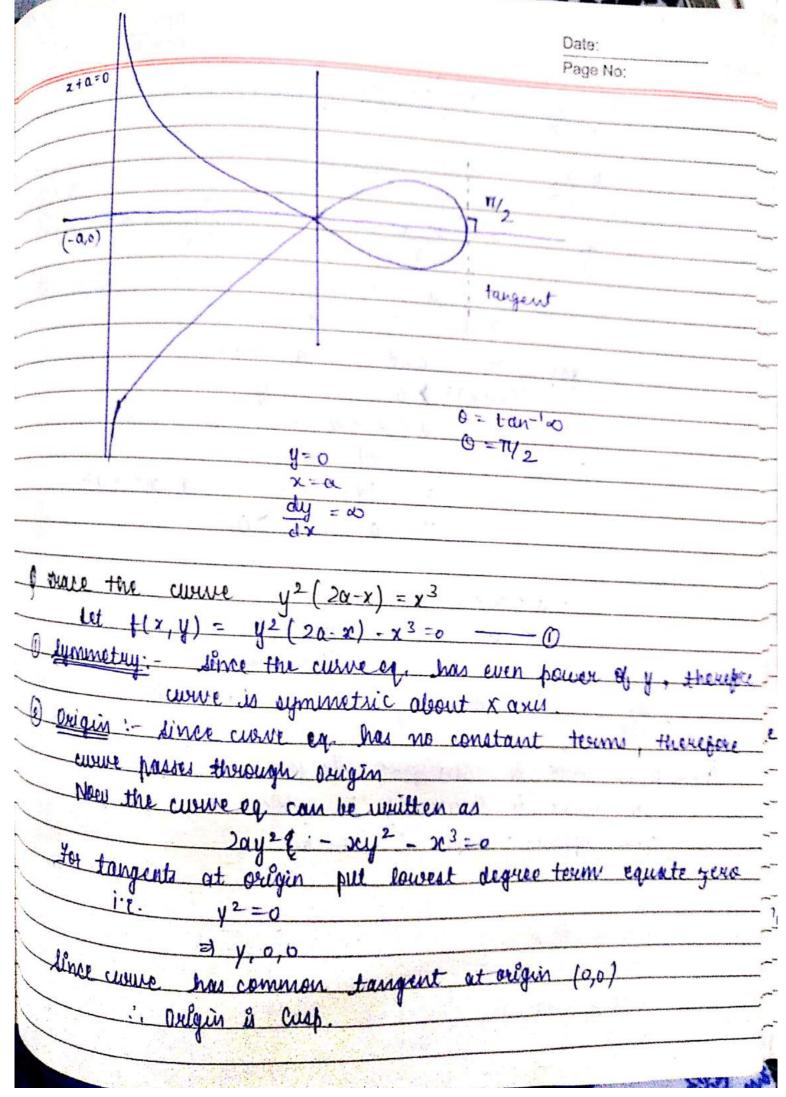
For tangents at origin,

put lowest degree term in 2 equal to zero

 $y = \pm x$ $y = \pm x \text{ are two distinct tangents that imply (0,0) is a mode.}$

- (3) Asymptote: for parallel asymptote, put coefficient of highest power of x and y equal to zero.

 ... x + a = 0 is parallel asymptote to Y axis.
- 4) Intersection Pts: For finding intersection pts. on x axis, full y=0 in (1), we have $x^2 (a-x) = 0$


 $\chi = 0$, α .

put x=0 in 1) we have y2=0
Put x=a

so, (0,0) and (a,0) are intersection pts.)

Date: Page No: entersection pts. on y axis put x=0 in 1 we have (0,0) (0,0) and (9,0) are intersection points of curre on Region: By 1) > or court be >a x can't be < a or by sign convention since y is imaginary por x>a & x <-a cours lies b/w Plotting of Points: $y^{2}(\alpha+x) - x^{2}(\alpha-x) = 0$ $2 \times (\alpha - x) - x^2$ $\left[(\alpha + x) - x^2 (\alpha - x) \right]$ $(2ax - 3x^2)(a+x)^2$ $2y \, dy = x \left(2a^2 - 3ax + 2ax - 3x^2 - xa + x^2 \right)$ $dx - \left(2a + x \right)^2 - xa + x = x^2$ (a+x)2

Date: Page No: $2y \, dy = x \left(\frac{2a^2 - 2ax - 2x^2}{(a \cdot 1x)^2} \right)$ $x \left[\alpha^2 - \alpha x - x^2\right]$ $\frac{\alpha_0^2 - x^2 - \alpha x}{(\alpha + y_1)^2}$ $\frac{\alpha^2 - \chi^2 - \alpha \chi}{(\alpha_1 \chi)^2}$ for y>0 and -a < x < 0 (a+x)2 >0 y>0 - a < x < 0 =) IXICa => |x|2 < a2 => x2 < a2 \$ a2-x2 >0 and -a< x<0 d -ax>0 Spiren hun course is doveloping the freter beiven curve is decreasing in - a < x < 0. Thus approx. shape is given as:-

(3) ASYMPTOTES: For parallel asymptotes, put coefficient of highest power of it and y could to zero.

x 2a is parallel asymptote to y axis.

: coefficient of x3 is constant as So, parallel asymptotes.

to x axis does not exist.

(9) Region = Eq. (8) can be written as $y^3 = \frac{x^3}{x^2 - x^2}$

$$y = \pm x \sqrt{x} = \pm x \sqrt{-x}$$

$$\sqrt{2a-x} = \pm x \sqrt{-x}$$

$$(x-2a)$$

o 2a

s. y is imaginary for se (0 &
20 42 ∞ 301 2018

curve lies b/w

0 < x < 2a

 $\chi = 2\alpha$

29,0

5) Plotting of points:

(Additional check total increasing or if there is any break between increasing) +

 $\frac{dy}{dx} = (x^2)(3a-x)$

102 y>0 and 0≤x2a

approximate shape is no above:

	Date: Page No:
A yeare thre curve $x^3 + y^3 = 3a dy$	Fallium of Descartes
since f(x, y) = 1	(V.X) 8.0
since the eq of the cur	ve remains oftened when
y is supplaced by or. Therefabout the line y=x.	fore the wive is symmetrical
A Maria annula da O a ana	
1) Drigin: - since cueux eq has no con cue passes ethrough origi	N
Now the given curve of com b	e written as ~
How townsent but lowerst drawn	
. (=0 in f(x,y) equate to year.
$x = 0 \qquad y = 0$	17.4
since 2 distinct tangents so it	is a node.
since at origin 2 distinct tangents	therefore origin is a node.
Asymptote: (x3+y3= 3axy	
since coefficient of enghest	power of or & y is constant
athere do not exist any bas	callel asumptoto.
oblique asymptotes, put or =	y=m.
$43(m) = m^3 + 1$	THE PARTY OF THE PARTY OF
$\Phi_2(m) = -3\alpha m$	
$f_{\alpha} = 0$	
$f_{m} = 0$ $f_{3}(m) = 0 = m^{3} + 1$	
$\Rightarrow (m+1)(m^2-m+1)=0$	
$\Rightarrow m = +1 \pm \sqrt{3}$	-1
hyreat 2 furnitates us m=-1 C=-	D. P.
significated for m=-1 c=-	$\phi_2(m) = -(-3am) = +a$
	\$ (m) 3 m2 m

	Date:
	Page No:
c = -a	7-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	1 + a = 0
(4) Intersection Per: To find intersection	houts. On X axis. Aut use:
eq. (i) x=0 when	1 21=0 , V=0
so (0,0) is the intersection poin	
Intersection point on y axis put x:	
y=0 t	
=> (0,0) is the intersection pt of curve	on the axis unhous arous
(C) M CHEVEN WILL PO SWA	positive above p
Again put y=x in @ we have.	
$2x^3 - 8ax^2 = 0$	
$x^2(2x-3a)=0$	
x = 0.0 $x = 3a/2$	
3C=0 => y=0	
•	Pino is- no interest current
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	line ij= se intersect cuwe at
	1
= = = = = = = = = = = = = = = = = = = =	
2+4+0=0	30,30
	2 2
	135°
$(-\alpha,0)$	(0,0)
	in a series of the series of t
The state of the s	
(0-0)	
	A Comment of the second
	13160.3

Date: @ region: Put h=-k by y=-k in 0 Page No: - (13+ k3) = 3 ahk : 0>0 = LHS is -ve & TOA RECO: RHS is Fue which is not possible therefore were doesn't pass in III quadrant Intersection On plotting of points ्र (झुकाव निकालने के लिए) For curve to be in III quadr--ant there must be 3 TOA x3+ y3 = 30xy $\frac{3x^2 + 3y^2 dy}{dx} = \frac{3ay}{dx} + \frac{3ax}{dx} \frac{dy}{dx}$ points but we have only origin as intervention point $\frac{1}{3}(x^2 - ay) = dy = ay - x^2$ $3(ax - y^2) dx = ay - x^2$ on axis. So clowe does not lie in TIT Quadrant $\frac{dy}{dx} \left(\frac{3a}{2}, \frac{3a}{2} \right)$ $= a \left(\frac{3q}{2} \right) - \left(\frac{3q}{2} \right)^2$ $\left(\frac{3a}{2}\right)^2 - \left(\frac{3a}{2}\right)a$ tan 0 = -1 $\Rightarrow \theta = \tan^{-1}(-1)$ = 0 = 135° 1 Trace the curve $y^2(a^2+x^2) = x^2(a^2-x^2)$ Let $f(y, x) = a^2y^2 + x^2y^2 - x^2a^2 + x^4 = 0$ $f(y_1x) = y^2(\alpha^2 + x^2) - x^2(\alpha^2 - x^2) = 0$ I symmetry: - since curve has even powers of x and y. Living is symmetric about both axis

Date:	
Page No:	

2) Oxigin: - since cuvue has even powers of se and y no constant terms therefore curve passes through origin.

For finding tangents at origin, put constant lowest degree term of (1) equate zero.

 $2^{2}(y^{2}-x^{2})=0$

since at origin, two distinct tangents so it is a node pt.

3 Asymptote:

 $y^2a^2+y^2x^2-x^2a^2+x^4=0$

 $a^2 + x^2 = 0$

oc = ± ai

-> complex root. So, no parallel

asymptote parallel to yaxis.

1 Intersection point: At x = 0

 $y^2 a^2 = 0 \Rightarrow y = 0$

 $x^2(a^2-x^2)$ \Rightarrow x=0 and $x=\pm a$

Now x=0 => y=0

x=a = y=0 & x=-a = y=0

: (0,0), (a,0) (-a,0) are intersection point of curve on Axes.

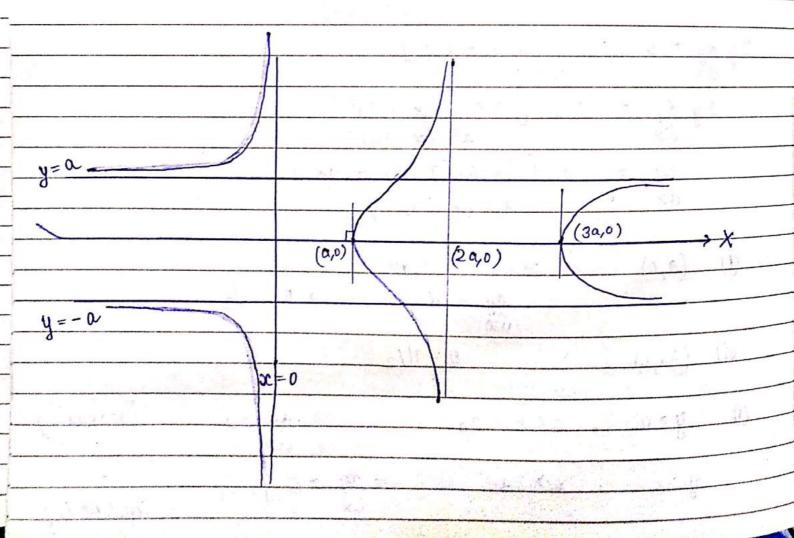
Region: $y = \pm x \sqrt{a^2 - x^2}$ $a^2 + x^2$

 $y = \pm x \sqrt{-(x-a)(x+a)}$ $a^2 + x^2$

(-a,0)

(9,0)

y is imaginary for x < -a y and x>a


Cuoure lie b/w -a = x = a

	Date: Page No:
& the curve y'= a'(x-a)	'xc-3a)
$\mathcal{X} = \mathcal{X} = \mathcal{Y}$	(1)
1et $f(x,y) = y^2 - a^2(x-a)(x-3a) = a^2(x-2a)$	
symmetry: dince curve eq. tras ev therefore curve is symmetric also	en fower of y.
Duigin:- 00 € (0,0) ≠ 0	The state of the s
to curve does not pass therou	gh origin.
Asymptotes: $y^2(x)(x-2a) \Rightarrow a^2(x^2)$	-1x+30 +2021
$y^2 x^2 - 2y^2 x a = a^2 x^2 - a^2$	$a^{3}x - 3a^{3} + 3a^{4}$
	$x^2 - 2\alpha x = 0$
\Rightarrow $y = \pm a$	x(x-2q)=0
	$\chi=0$, 2a
	124
Diterrection Pts.: - Eq (1) can be	written as
X 1 V - 201 112 - A2 1.	a) $(x-3a)=0$
Put y=0, we have	1124
$\mathfrak{R} = \mathfrak{A}_{\mathfrak{Q}} \mathfrak{R}$	
(a,0) (3a,0) are intersection	pts. on axis.
Region: $y = \pm \alpha \sqrt{(\alpha - \alpha)(x - 3\alpha)}$	CONTROL STATE
x (x-2a)	
	+ - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 +
Y is real for 20 LD, a & 20 L 2a	0 4 24 04
8C 2 3 a	
$y^2 = a^2(x-a)(x-3a)$	
x(x-2a)	

Date: Page No:

Now shift origin at (a,0)Put x = X + a y = Y + 0 $\Rightarrow y^2 = a^2 [X] [X - 2a]$ [X + a] [x - a] $\Rightarrow y^2 [x + a][x - a] = a^2 X [x - 2a]$ $\Rightarrow y^2 X^2 - y^2 \overline{a}^2 = a^2 X^2 - 2a^3 X$ butest degree term $2a^3 X = 0 \quad tangent at new$ $\Rightarrow x = 0 \quad tangent at new$

Shift origin at (3a,0)Put 3c = X + 3a y = y + 0 $y^2 = a^2 \left[x + 2a \right] \left[x \right]$ $\left[x + 3a \right] \left[x + a \right]$ $\Rightarrow y^2 x^2 + 4a x y^2 + 3a^2 y^2 = a^2 x^2 + 2a^3 x$ Toward degree term for Tangent $2a^3 x = 0 \Rightarrow x = 0$ 3a = 3awill be tarrigent.

Date:

Page No:

6 plotting of points:

$$y^2 = a^2 (x-a) (x-3a)$$

 $x (x-2a)$

$$2y \frac{dy}{dx} = a^{2} \left\{ -a(x^{2} - 2a) + (-3a)(x - a) \right\} + x(x - 2a) \right\}$$

$$y^{2} = a^{2} \left(x^{2} - yax + 2a^{2} \right)$$

$$y^2 = a^2 \left(x^2 - 4ax + 3a^2 \right)$$

 $x^2 - 2ax$

$$2y \frac{dy}{dx} = a^{2} \left[(2x - 4a)(x^{2} - 2ax) - (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax)^{2} + (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax)^{2} + (2x - 2a)(x^{2} - 4ax + 2a^{2}x^{2} - 6a^{2}x + 2a^{2}x^{2} - 6a^{2}x + 2a^{2}x^{2} - 8a^{2}x + 6a^{3}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax)^{2} + (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax)^{2} + (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax) - (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax) - (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax) - (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax) - (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= a^{2} \left[(2x - 4a)(x^{2} - 2ax) - (2x - 2a)(x^{2} - 4ax + 3a^{2}) \right]$$

$$= 0^{2} \left[2x^{3} - 4\alpha x^{2} - 4\alpha x^{2} + 8\alpha^{2}x - 2x^{3} + 8\alpha x^{2} - 6\alpha^{2}x + 2\alpha^{2}x^{2} - 8\alpha^{2}x + 6\alpha^{3} \right]$$

$$= 0^{2} \left[2x^{3} - 4\alpha x^{2} - 4\alpha x^{2} + 8\alpha^{2}x - 2x^{3} + 8\alpha x^{2} - 6\alpha^{2}x + 2\alpha^{2}x^{2} - 8\alpha^{2}x + 6\alpha^{3} \right]$$

$$\frac{2y \, dy = a^2 \left[2ax - 6a^2x + 6a^3 \right]}{dx}$$

$$\frac{2y \, dy}{dx} = \frac{2 \, a^3 \left[x^2 - 3a \, x + 3a^2 \right]}{x^2 \left(x - 2a \right)^2}$$

$$\frac{dy}{dx} = \frac{a^3 \left[(x-a)(x-3a) + ax \right]}{x^2 (x-2a)^2 y}$$

$$(i) (a,0) \qquad x = a \Rightarrow y = 0$$

$$\frac{dy}{dx} = \frac{1}{2}$$

	Done N
	Page No:
& Luce the come	
$ay^2 = \chi^2 (a - \chi)$	
Let $f(x,y) = ay^2 - x^2(a-x)$ - 0	
symmetry:- since cume eq: has ever	n power of y
2. Curve is symmetric als	out x axis
Origin! - 00 f(0,0) = 0	
: Cover passes through	Origin.
	degree term = 0)
$y = \pm x$	1 1 1 1 1 1 1
Since at origin 2 distinct tangents	
⇒ origin is a node point	
n 5 2	1.4.1. 48 June 0
Asymptotes: - ay2-x2a+x3=0	. 6
No parallel Asymptote	Manual of williams
For Oblique asymptote,	
$\phi_3(m) = 1$	
$\Phi_2(m) = am^2 - a$	
$\phi_{i}(m) = 0$	
$c = -\rho_2(m) = -\rho_2(m) = \alpha$)
\$3'(m) 0	
So, no real asymptotes e	

(a) Intersection Points :- Antersection on x axis put y=0 $x^{2}(x-a)=0$ x=a,0,0 $(0,0) \quad (a,0) \quad \text{Intersection pts.}$ y = x=0, y=0

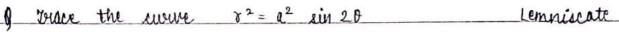
A	MOENTION	OF TANGEN	TS :-
6.1	DIKECTION		

slope of sieve at any point (x, 0) can be found out by following $tan \phi = r \frac{do}{dr}$

where ϕ is angle b/w radial vector & tangent.

and $0 + \phi = y$

Radial vector


(A) LOOP :-

If come eq. are in the form of

r = a sin no

or r = a cosno

then curve has nor In loops if n is odd or even respectively.

Let $f(r, \theta) = r^2 - a^2 \sin 2\theta = 0$

O SYMMETRY: Since $f(-\tau, \theta) = f(\tau, \theta)$ then curve is symmetrical

about kole.

(a) POLE: $-7^2 = a^2 \sin 20 = 0$

 \Rightarrow sin 20 = 0

=) 20 = nTC

0 = 0, T', Tt, 371, ...

 $\Rightarrow \theta = 0, \pi/2$

Esq. of tangent at pole are 0=0 and 0=11/2 Both are distinct. > Pole is node.

1 ASYMPTOTE: - since y has finite values for all 8.

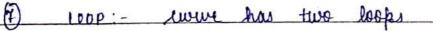
^				The state of the s
POINTS ON THE	INDVE	~ 2 - A2 win 2 0		= + 0 [
C LEUATA BIN THE	CURVE	1 = 11 301 20	0	I a J sinon

$$\theta$$
 0 $\pi 1/6$ $\pi 1/4$ $\pi 1/3$ $\pi 1/2$ $2\pi 1/3$ $3\pi 1/4$ π 0 $\pm a\sqrt{3}$ a $\pm a\sqrt{3}$ 0 $\pm a\sqrt{3}$ $\pm a\sqrt{-1}$

:
$$r_{max} = a$$

: $r_{max} = a$
: $r_{max} = a$

has imaginary values


=> Curry has no branch in II & TV quadrant

6 MRECTION OF TANGENT:-

$$3^2 = 0^2 \sin 20$$

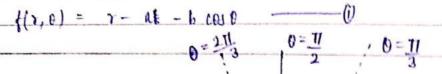
 $3x = 0^2 \cos 20 d0$

$$\frac{\tan \phi = \sigma d\theta}{d\tau} = \frac{2\pi \alpha^2 \sin 2\theta}{2\sigma \alpha^2 \cos 2\theta}$$

$$0 = 0 \Rightarrow \phi = 0$$
 $0 = \pi$
 $0 = \pi$

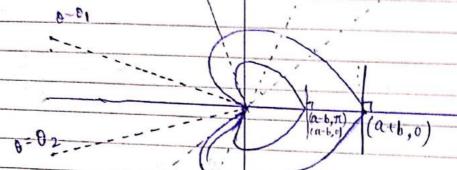
SHILL	Date. Tage to.
0 years the rune = a cos 3 0 Let f(x,0) = r-a cos 30 - 0 SYMMETRY: - Lines f(x,-0) = plar x	(Three leaved Rose)
$0 \text{SYMME IK} $ $= \gamma \cos ($ $= \{(\delta, 0)\}$	60)
6 POLE: $r = 0$	d line 6=27/3
COS 3 0 = 0 0 = 51/6	- ranges
$3\theta = (2n+1)\frac{\pi}{2}$ $\theta = \pi$	(a, o)

Therefore, $\theta = \frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{5\pi}{6}$ are 3 distinct tangent on plane \Rightarrow Three branches of come


- B) ASYMPTOTES: Lince 8 = a cos e gives finite volues for all e ⇒ there is no asymptote b/w -1 ≤ cos 30 ≤ 1
- B REGION: since (cos 30) < 1 => rmax = 0
 Thus, where lies inside a virule of radius 'a'
- 6 DIRECTION OF TANGENTS:

$$\gamma = a (0) 30$$

 $1 = -a (3 \sin 30) \frac{d0}{d7}$


ton $\phi = 8 d\theta = -\frac{\alpha}{48} = \frac{1}{38} = \frac{1}{38} = \frac{1}{38}$ UNEQUE HOURTE BOOK tan $\phi = \frac{1}{9} = \infty \Rightarrow \phi = 90$

€ L00P:- ¥	home ea	is	*** TE	a	cpc30	k 3 ü	odd no
TO CONTRACT		=>	Cusive	has		loops	
And the state of t							The second second

ach (Limacon) 1. Exace the mome re at bear a

0 0, 0, large no asymptotes To (branches not go logling)

1 SYMMETRY: $f(r,-0) = r - a - b \cos(-0)$

= x - a - b cos 0 = f(x, 0)

: Curue is symmetric about initial line.

D POLE: X = 0

0 + b cos 0 = 0

(O) 0 = - a

8 = (D)-1 (0)

Lince cos o has - ne values in II and III quadrant. has 2 distinct values. MY ROUGH NOTE BOOK day 0 = 0, & 0 = 02

Pole is Node.

3 ASYMPTOTE: since &= a + b coso has finite values for all o > rusure has no asymptote.

1 POINTS ON THE CURVE :- = a+b cos o

Ð	0	11/4	11/3	11/2	27/2	0,	BICH	71
8	atb	Q+ b V2	atb	a	9-61	Λ.	-ve	
		V2	2		1/2		-ve	a-6

6 REGION: - max = a+b

rmin = a-b ≠ curver lies inside a circle of yadius a+b.

6) DIRECTION OF TANGENTS

 $tan \phi = r d\theta$

 $\frac{dv}{d\theta} = -b \sin \theta$

 $tan \phi = \frac{a+b \cos \theta}{a-b \sin \theta}$

 $\tan \phi = \infty = \phi = \tau 1/2$

At 0 = TC

=> tan \$ = \$

=) 0 = 11/2

D LOOP: - FOR SOME values of B, & becomes - ve. times

lince a < b

=) a-b <0

". there is an inner loop between 0 = 0, & 0 = 02

SHREE NAVNEET

	Υ:	= a e mo	equiana	1000
O. Trace the) = r - aemo		, ,	Spiral
Let \$ (7,0) = 7- 00			
	11 12 A18 A18	R(x=0) =	f(x,0)	

(a) [SYMMETRY] since curve
$$f(\tau,\theta) \neq f(\tau,\theta)$$

$$f(\tau,\theta) \neq f(\tau,\theta)$$

$$f(\tau,\theta) \neq f(\tau,\theta)$$

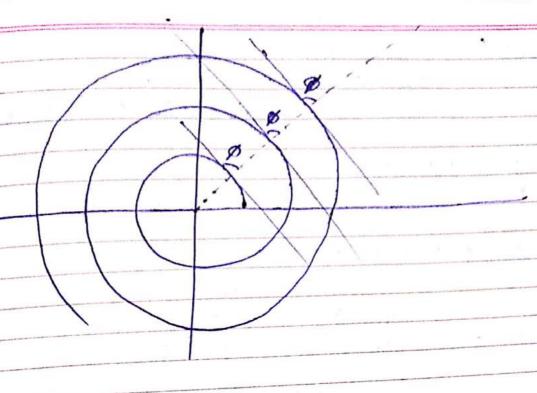
 $f(x, \pi + \theta) \neq g(x, \theta)$ $f(x, \pi + \theta) \neq g(x, \theta)$ $f(x, \pi + \theta) \neq g(x, \theta)$

: Curve does not poss passes through pole

3 POINTS ON THE CURVE,

_	0	0	11/2	n	2 п	211	T
1	7	a .	QEMII/2	aemn	00 m271	a p ^{3mTL}	T

(4) REHION & exist for all value of o


$$d\theta \Rightarrow y = a e m \theta$$

 $tan b = ame^{m\theta} d\theta$

tan $\phi = a \rho m \theta = 1$ which depend on m

and therefore direction of tangents at each points

6 LOOP There is no loop in curve because for each by is different.

I wave the curve $y = a + b \cos \theta$ (a>b)

SYMMETRY:- Let $f(x,\theta) = x - a - b \cos \theta$ $f(x,-\theta) = f(x,\theta)$: Curve is symmetrical about initial line.

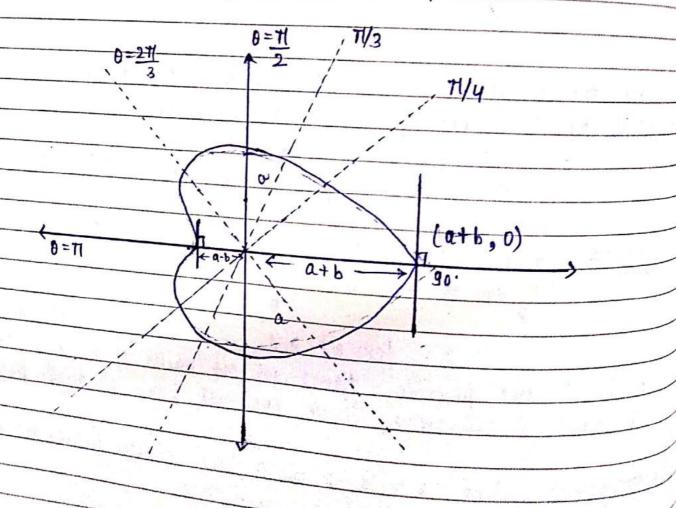
 $\frac{\text{POLE:}}{\Rightarrow} \quad \text{COS} \quad \theta = 0$

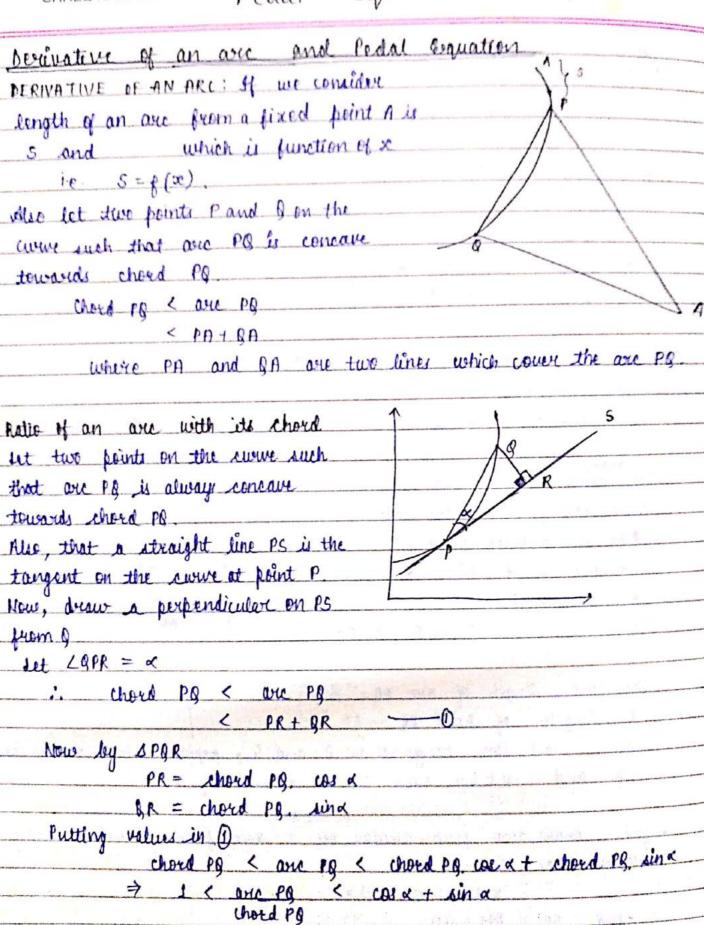
which is not possible. Hence for no value of 0, & is equal to zero. Therefore curve does not has through pole.

ASYMPTOTE: since $r = a + b \cos \theta$ has finite values for all θ Surve has no asymptotes.

POINTS ON	THE CURY	11/3	11/2	211/3	10	
0	0 H/4	11/3 a+b/2	a	a-b/2	+ve	
8 4	A+b A+	b/V2 1 1 0/2				

REGION: rmax = a+b


rmin = a-b


: conve lies in a reading of circle a+b

DIRECTION OF TANGENTS: y = a + b cas of 1 = -b sin or ds

 $tan \phi = r d\theta = a + b \cos \theta$ $dr - b \sin \theta$

 $dt \theta = 0^{\circ} \quad tan \phi = \infty \quad \Rightarrow \quad \phi = 90^{\circ}$ $\theta = \pi \quad tan \phi = \infty \quad \Rightarrow \quad \phi = \pi/2$

As $0 \to P \Rightarrow x \to 0$ and MY ROUGH NOTE BOOK PB \to tangent at P.

	lim	are p	8
lim 1	9-> P	cheed	PQ
1-p			

 $l \lim_{\kappa \to 0} \cos \alpha + \sin \alpha$

1 < lim arc PB < 1

> lim arc P& = 1 g→ p chord PQ

pocinative of an Axx.

a) Contrain Formula:

Let the curve eq. is

y = f(xx)

Thus points P(x, y) and

f(x+5x, y+5y) on the curve.

Also let a fixed point A

on the surve which has

one length from P is 5.

and one length from R is 5+ 85

(x + 5x + y + 5y)

(x + 5x + y + 5y)

(x + 5x + y + 5y)

(x + 5y)

therefore, length of arc PB = 85

Now, draw two tangents on P and Q, reptac which makes angle ψ and $\psi + \delta \psi$ with x - axis respectively.

Again, draw two perpendicular on X-axis from P and g respectively
Therefore, PN = DM-DL

 $= x + \delta x - x = \delta \alpha$

and an = am - mn = am - PL

MY ROUGH NOTE BOOK = Y + EY - Y = SY

Nove, in APBN

$$\Rightarrow \delta l^2 = \delta x^2 + \delta y^2 - \frac{1}{2}$$

$$\Rightarrow \frac{\left(\delta L\right)^2}{\left(\delta x\right)^2} = 1 + \frac{\left(\delta y\right)^2}{\left(\delta x\right)^2}$$

Now
$$85 = 85.81$$
 $8x = 81.8x$

From
$$0$$
, $s_s = \pm s_s \left[1 + \left(\frac{sy}{sx} \right)^2 \right]$ (2)

As
$$g \rightarrow P$$
 $\delta x \rightarrow 0$

$$\lim_{Q \to P} \frac{\delta s}{\delta l} = 1.$$

We know
$$\frac{11m}{8x \rightarrow 0} \frac{8y}{8x} = \frac{dy}{dx}$$

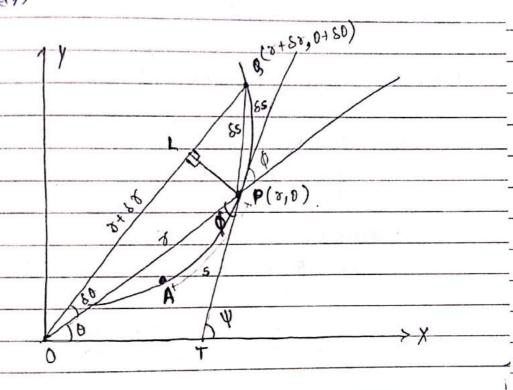
$$\lim_{\delta \chi \to 0} \frac{\mathbf{S}_{S}}{\delta \chi} = \pm \int_{\mathbf{S}_{X}} \frac{1 + \lim_{\delta \chi \to 0} \left(\frac{\mathbf{S}_{Y}}{\delta \chi} \right)^{2}}{\delta \chi}$$

$$\frac{ds}{dx} = \pm \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

If S increases when or increases then positive tre sign otherwise take - re sign.

$$\frac{ds}{dy} = \pm \sqrt{1 + \left(\frac{dx}{dy}\right)^2}$$

Corr. of curve eq.n is x = f(y)


Now by eq. $(s)^2 = (sx) + 1$

$$\frac{\delta es}{\delta y} = \frac{ss}{sl} \cdot \frac{sl}{\delta y}$$

$$\frac{\delta_S}{MY} = \pm \frac{\delta_S}{1 + \left(\frac{\delta_S}{\delta_S}\right)^2}$$
MY ROUGH NOTE BOOKSY
$$\frac{\delta_S}{\delta_S} = \pm \frac{\delta_S}{1 + \left(\frac{\delta_S}{\delta_S}\right)^2}$$

As
$$Q \rightarrow P$$
 then $Sy \rightarrow O$
 $\lim_{Sy \rightarrow O} Sy = \pm \int 1 + \lim_{Sy \rightarrow O} \left(\frac{Sx}{Sy}\right)^2$

$$\frac{ds}{dy} = \pm \sqrt{1 + \left(\frac{dx}{dy}\right)^2}$$

Let curve eq.
$$\tau = f(\theta)$$

Now
$$ds = \lim_{\delta 0 \to 0} \frac{\delta s}{\delta 0}$$

$$= \lim_{\delta\theta \to 0} \text{ are } P\theta$$

as
$$\delta\theta \to 0$$
 $\Rightarrow \theta \to P$
 $\lim_{\delta\theta \to 0} \text{ are } P\theta = 1$
 $\delta\theta \to 0$ therefore $\theta \to P$ therefore

(chord Pg) = (PC) = +(QL) = (

again in s OPL

and or = 2 cos so

: BL = DB - OL

= 8+88-86360

Putting values in (), we have.

[chord 18] = (v sin so) = + (v+8v-v cosso)=

$$= \left[3 \left[80 - \left(50 \right)^{3} + \ldots \right] \right]^{2} + \left[3 - 58 - 3 \left(1 - \left(50 \right)^{2} + \left(50 \right)^{2} + \ldots \right) \right]$$

(chord PB)2 = 82802 + S82

From g $\frac{ds}{d\theta} = \lim_{\delta \theta \to 0} \frac{\text{thord PQ}}{\delta \theta}$

 $\frac{ds}{d\theta} = \lim_{\delta \theta \to 0} \left(\frac{x^2 + \delta \theta^2 + \delta x^2}{\delta \theta} \right)^{1/2} \frac{1}{\delta \theta}$

 $= \lim_{\delta\theta \to 0} (8^{2} + \delta\theta^{2} + \delta7^{2})^{\nu_{2}} = \lim_{\delta\theta \to 0} \left[\frac{3^{2} + \delta\theta^{2} + \delta7^{2}}{50^{2}} \right]^{\nu_{2}}$

 $= \lim_{\delta \theta \to 0} \left[x^2 + \left(\frac{5}{5} \right)^2 \right]^{r_2}$

 $= \left[8^2 + \lim_{\delta\theta \to 0} \left(\frac{\delta \pi}{\delta \theta} \right)^2 \right] \frac{1}{2}$

 $\frac{ds}{d\theta} = \begin{bmatrix} \gamma^2 + \beta \cos \left(\frac{d\tau}{d\theta} \right)^2 \end{bmatrix}^{\frac{1}{2}}$

Corrollary: If the time curve eq is 0 = f(x) $\frac{ds}{d\theta} = \frac{ds}{dx} \frac{dx}{d\theta}$

$$-) \frac{ds}{dx} = \frac{ds}{d\theta} \frac{d\theta}{dx}$$

$$= \left[x^3 + \left(\frac{dx}{d0} \right)^2 \right]^{\frac{1}{2}} \frac{d\theta}{dx}$$

$$= \sigma^2 \left(\frac{do}{d\sigma}\right)^2 + \left(\frac{d\sigma}{d\sigma}\right)^2 \left(\frac{do}{d\sigma}\right)^2$$

$$\frac{ds}{dr} = \left(\frac{r}{r}\frac{d\theta}{dr}\right)^2 + 1$$

$$\Rightarrow \frac{ds}{dr} = \sqrt{\left(r \frac{d\theta}{dr}\right)^2 + 1}$$

Important Formulae

DI the curve of in the form of parametric i.e.

$$x = \beta_1(t)$$
 $y = \beta_2(t)$

Now,
$$ds = ds \cdot dx$$
 $dt dx dt$

$$= \left[1 + \left|\frac{dy}{dx}\right|^2\right]^{\frac{1}{2}} \frac{dx}{dt}$$

$$\left[\frac{1+\left(\frac{dy}{dt}\right)^{2}}{\left(\frac{dx}{dt}\right)^{2}}\right]\frac{dx}{dt}$$

$$\frac{ds}{dt} = \left[\frac{dx}{dt} \right]^2 + \left(\frac{dy}{dt} \right)^2 \right]^{\frac{1}{2}}$$

Tangent at P makes an angle 4 with x : axis.

$$\Rightarrow$$
 dy = tan ψ

$$\frac{ds}{dz} = \left[1 + \left(\frac{dx}{dz} \right)^2 \right]^{\frac{1}{2}}$$

$$\frac{\partial}{\partial x} = \left[1 + \tan^2 \psi\right]^{1/2}$$

$$\Rightarrow$$
 $ds = sec \Psi$

$$\Rightarrow \frac{dx}{ds} = \cos \psi$$

$$= tan \psi \cdot cos \psi$$

$$dy = sin \psi$$

$$\frac{dy}{ds} = \sin \psi$$

$$\Psi = \phi + e$$

$$= \gamma \left[80 - (80)^3 + - - - \right]$$

As
$$Q \rightarrow P$$

As
$$g \rightarrow p \Rightarrow \angle PQL \rightarrow \phi$$

$$tan\phi = \sigma d\theta$$
 $d\sigma$

$$\cos \phi = 1 = 1 = 1 = dr = dr$$

$$\sec \phi = \sqrt{1 + \tan^2 \phi} = \sqrt{1 + \sigma^2 \left(\frac{1 + \phi}{dr}\right)} = \frac{dr}{ds} = \frac{d\sigma}{ds}$$

$$Sin \phi = 1 - \cos^2 \phi = \tan \phi = 7 d\theta$$
MY ROUGH NOTE BOOK

 $\cos \phi$
 ds

Enduate: de for the following curves.

a)
$$\frac{2a}{x} = 1 + \cos \theta$$

we know that do = \ \ \frac{do}{do} \rightarrow \ \ \frac{do}{do} \rightarrow^2

$$\frac{2\alpha}{\delta} = 11 \cos \theta$$

$$\frac{ds}{d\theta} = \begin{bmatrix} x^2 + x^4 \sin^2 \theta \end{bmatrix}^{\frac{1}{2}}$$

$$= \frac{3^2}{3^2} + \frac{\sin^2 0}{4\alpha^2} = \frac{1}{3^2}$$

$$= x^{2} \frac{\left(1 + \cos 0\right)^{2} + \sin^{2} \theta}{4a^{2}} + \sin^{2} \theta$$

$$= \frac{\gamma^2}{20} \left[1 + 1 + 2 \cos 0 \right]^{1/2}$$

$$= \frac{\pi^2}{2!} \left[2 + 2 \cos \theta \right]^{1/2} - \frac{\cos 2\theta - 2 \cos \theta}{2!}$$

$$= \frac{\chi^2}{2a} \left[\frac{2 \times 2 \cos^2 \theta}{2} \right]^{\frac{1}{2}}$$

$$\Rightarrow ds = x^2 \cos(0)$$

$$\frac{ds}{ds} = \frac{4a^2}{ds} \sqrt{2} \left(\frac{1+\cos\theta}{2} \right)^{\frac{1}{2}c}$$

$$\frac{ds}{d\theta} = \frac{2(2a)(1+\cos\theta)^{1/2}}{(1+\cos\theta)^{2}} \Rightarrow \frac{2\sqrt{2a}}{[1+\cos\theta]^{3/2}} = \frac{ds}{d\theta}$$

$$\frac{ds}{d\theta} = 2\sqrt{2} \alpha \left(\frac{1}{2 \cos^2 \frac{\theta}{2}} \right) \frac{3}{2}$$

$$= 2\sqrt{2} \alpha$$

$$= 2\sqrt{2} \cos^3\left(\frac{0}{2}\right)$$

$$\frac{ds}{d\theta} = \frac{a \sec^3 \theta}{2}$$

b)
$$r = a (1 + cos e)$$

$$\frac{dr}{de} = a (-sin e)$$

$$\chi^2 = \alpha^2 (1+\cos \theta)^2$$

$$\frac{ds}{d\theta} = \sqrt{a^2 (1 + \cos \theta)^2 + a^2 \sin^2 \theta}$$

$$= \sqrt{20^2 + 20^2 \cos \theta}$$

$$= 0.52 \left[1 + \cos \theta \right]^{1/2}$$

$$= 20 \cos(0)$$

$$\frac{ds}{d\theta} = \frac{2\alpha \cos \theta}{2}$$

prove that
$$ds = sec(x)$$
 and $d^2x = -1 sin(2x)$

$$\frac{ds}{dx} = \pm \int \left[1 + \left(\frac{dy}{dx}\right)^{2}\right]$$

$$\frac{dy}{dx} = \frac{a}{\sec(\frac{x}{a})} \left[\frac{\sec x}{a} \frac{\tan x}{a} \right] \left(\frac{1}{a} \right)$$

$$\frac{dy}{dx} = \tan x$$

$$\frac{dx}{dx} = \frac{1}{a} \left[\frac{\sin x}{a} \right] \left(\frac{1}{a} \right)$$

$$\frac{dy}{dx} = \frac{tan x}{a}$$

MY ROUGH NOTE deak =
$$\sqrt{1 + \tan^2 x} = \sqrt{\sec^2 x} = \sec x$$

$$\frac{ds}{dx} = \frac{\sec(x)}{a}$$

$$\frac{dx}{ds} = + \cos x$$

=
$$-3in \times (1)$$

$$\frac{dx}{ds^2} = \frac{d}{ds} \left(\frac{dx}{ds} \right)$$

$$= \frac{d}{ds} \left(\frac{ces}{a} \right)$$

$$=\frac{d\cos x}{dx}\frac{dx}{a}$$

$$= \frac{-1\sin x}{a} = \frac{\cos x}{a}$$

$$\frac{d^2x}{ds^2} = -1 \sin\left(\frac{2x}{a}\right)$$

Ex. For any curre

$$\gamma^m = q^m \omega m \theta$$

$$\frac{\text{T.P.}}{\text{do}} = \int_{0}^{\infty} \left(\operatorname{Sec} m o \right) \frac{m-1}{m}$$

and
$$a^2 m d^2 r + m r^{2m-1} = 0$$

Given curve equation
$$x^m = a^m \cos m\theta$$
 — 0

When know that $ds = \sqrt{x^2 + (dx)^2}$ — 0

$$m \gamma^{m-1} d\gamma = -a^m m \sin m\theta$$

$$\Rightarrow \frac{dr}{do} = -\frac{a^m \sin m\theta}{\gamma^{m-1}}$$

Putting values in (1) we have + (-amsinmo)

72 + a2m sin2 mo 1/2 72m + a2m sin2 mo 7 1/2

a2m cos2mo -4 a2m sin2mo

am a cosemo m

a (Sec mo) m

(b) We know ds

der d dr

- am sin mo

a (sec mo) mi

a (sec mo) m

MY ROUGH NOTE BOOK

P.T. 0.

we have dr = -r tan mo

jum 01

y secmo

= - 8 tan m B

dr = - sin mo

= -d (sin mo)

= -d (sin mo) ... Fene

- m cos mo

8 sec mo

M COJEMO

From om = am cosmo

-my 2m-1 a2mas

+ my2m-1 a2m 4

a2m m y 2 m - 1 = 0

MY ROUGH NOTE BOOK

Hence Proved

B Her the cycloid

$$x = a(1-cost)$$

 $y = a(totsint)$ then

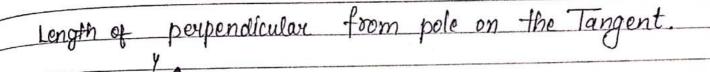
find ds, ds, ds

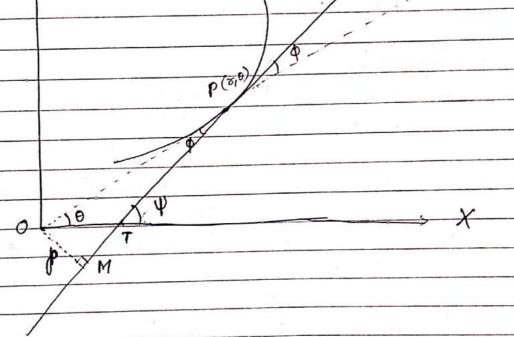
Given since a = a (1-cost) y = a (t + sint)

We know that $\frac{ds}{dt} = \int \left(\frac{dx}{dt} \right)^{2} + \left(\frac{dy}{dt} \right)^{2} \qquad \qquad (2)$

 $dx = a \sin t$ $dy = a (1 + \cos t)$

Put in Q, $\frac{ds}{dt} = \left[a^2 \sin^2 t + a^2 + a^2 \cos^2 t + d^2 \cos^2 t + d^2 \cos^2 t \right]^{\frac{1}{2}}$


ds = 1 & a2 + & a2 cost . 1+ cost = 2 cos2 t


 $\frac{ds}{dt} = & a \cos(\frac{t}{2})$

 $\frac{ds}{dx} = \frac{ds}{dt} \cdot \frac{dt}{dx} = \frac{a \cdot a \cdot cos(t/2)}{a \cdot sin t} = \frac{coxec(t/2)}{a}$

 $\frac{ds}{dy} = \frac{ds}{dt} = \frac{d}{dt} \frac{a \cos(t/2)}{a(1+\cos t)} = \frac{d}{dt} \frac{d}{dt}$

In

due that $P(x_10)$ be any point on the curve.

Therefore x is the radial vector of x is the angle with x-axis or radial vector of x is the angle with x-axis or radial vector of x is the angle x-axis or radial vector of x-axis on x-axis on

Now draw a tangent on p which make angle of with X axis.

Draw a perpendicular on tangent is OM such that

and $LOPM = \phi$

Now in A POM, p = x sin \$ - 2

To find p in form of v, o, dr

we know that $tan \phi = r do$ solven

by eq. 2,

$$\Rightarrow \frac{p^2 = \gamma^2 \sin^2 \phi}{1 = \kappa^2 \frac{1}{\gamma^2 \sin^2 \phi}}$$

$$\Rightarrow \frac{1}{p^2} = \frac{\cos e^2 \phi}{y^2} = \frac{1 + \cot^2 \phi}{y^2}$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{3^2} \left(\frac{1+1}{\tan^2 \phi} \right)$$

$$\Rightarrow \frac{1}{P^2} = \frac{1}{\gamma^2} + \frac{1}{\gamma^4 \left(\frac{d0}{d\eta}\right)^2}$$

$$\Rightarrow 1 = 1 + 1$$

$$p^2 \quad \partial^2 + \partial^4 \left(\frac{d\theta}{d\theta}\right)^2$$

$$\frac{dr}{d\theta} = \frac{1}{u^2} \frac{du}{d\theta} \Rightarrow \left(\frac{d\theta}{dx}\right)^2 = \frac{u^4}{du} \left(\frac{d\theta}{du}\right)^2$$

$$\Rightarrow \frac{1}{u^2} = \frac{u^2}{u^2} + \frac{u^4}{u^4} \left(\frac{1}{u^2} + \frac{1}{u^4} + \frac$$

$$P^{2} = u^{2} + u^{4} \left(\frac{1}{u^{4}} \left(\frac{d\theta}{du} \right)^{2} \right)$$

$$\frac{1}{p^2} = u^2 + \left(\frac{du}{d\theta}\right)^2$$
MY ROUGH NOTE BOOK

pedal Equations

of curine eq. n = 1(0) can be represent in p and or then the doen it said to be eq of a = {(0), where p is the perpendicular. length from the pole.

of the find the pedal eq. of the curve whose og is given in contesian form:

det urve eq. be f(x,y) = 0

equation of langual at f(x,y) is

y-y = dy (x-x)

Perpendicular length from origin on 3 is p = x dy - y

 $\sqrt{1+\left(\frac{dy}{dx}\right)^2}$

From (@ & a), eliminate or and y and the smultant eq. is said to be pedal eq. of curve f(x,y)=0.

To find pedal equation of the curve whose eq, is given in polar form: -

let curve eq. be r= f(0)

He know that

Eliminate o from 1 and 1, then the obtained relationship is known as pedal eq. of curve r = f(0)

Alternatively

and $\tan \phi = \tau d\theta$ MY ROUGH NOTE BOOK $d\tau$

Course eq. $r = f(0) - G$
By O. D. B. eliminate o & P
then the obtained eq is pedal eq. of the given curve.
Example- Find the pedal equation of the parabola
$y^2 = 4a(x + a)$
Given curve eq. y= 4a(x+a) -0
: We know that $v = x^2 + y^2$
Differentiating 1 w.r.t.x
$2y = dy = 4\alpha$
dx
$\frac{dy}{dx} = \frac{aa}{y} - 3$
l d'x Y
Therefore eq. of the tangent at (x, y) is given as
$Y-y=\frac{dy}{dx}(X-x)$
dx
y-y=2a(x-x)
, J y
$\Rightarrow 2ax - y + y - 2ax = 0 - \theta$
· Y Y
Now, Porpendicular distance from origin on 4 is given by
$b = y - x - 2a \qquad y^2 - 2ax = \sqrt{y^2 + 4a^2}$
$\sqrt{1+\frac{4a^2}{V^2}}$
$p = \sqrt{2 + 200^2} \sqrt{2 - 200}$
$p = \sqrt{2 + 40^2} \sqrt{y^2 + 40^2}$
$= 2ax + 4a^{2} = 2ax + 4a^{2}$ $\sqrt{4ax + 4a^{2} + 4a^{2}} = 4 \sqrt{2ax + 2a^{2}}$
$= \frac{2\alpha x + 4\alpha^{2}}{\sqrt{4\alpha x + 4\alpha^{2} + 4\alpha^{2}}} = \frac{2\alpha x + 4\alpha^{2}}{\sqrt{4\alpha x + 2\alpha^{2}}}$
$p = \alpha x + 2\alpha^2 = (\alpha x + 2\alpha^2 - 6)$
$p = \frac{\alpha x + 2\alpha^2}{\sqrt{\alpha x + 2\alpha^2}} = \sqrt{\alpha x + 2\alpha^2}$
By (2) $y^2 - x^2 + y^2 = x^2 + 4ax + 4a^2$
MY ROUGH NOTE BOOK 2

(e<1)

From (5), (6)

$$p^2 = ax + 2a^2$$

$$p^2 = a(x + 2a)$$

$$p^2 = ax$$

which is pedal eq. of given cuowe.

Example - Show that the pedal eq. of the ellipse l = 1 + e coso

 $\frac{1}{p^2} = \frac{1}{\varrho_2} \left(\frac{\varrho_2}{\delta} - 1 + \varrho^2 \right)$

Given curve eq. $\frac{1}{x} = 1 + e \cos \theta$

Taking log on both sides, we have log l-log r = log (1+e coso)

Differentiating Dw. x.t.
$$\frac{1}{8}\theta$$
.

 $\frac{1}{8}\frac{d8}{d\theta} = \frac{1}{1+e\cos\theta} \left(-e\sin\theta\right)$

$$\frac{dr = r (+e \sin 0)}{d\theta}$$

$$\frac{dr}{d\theta} = \underbrace{e r s in \theta}_{1 + e \cos \theta}$$

: We know that

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta} \right)^2$$

$$=\frac{1}{7^2}+\frac{1}{72}\left(\frac{1}{7}\frac{dr}{d\theta}\right)^2$$

$$\frac{1}{2} \frac{1}{2} \frac{d\theta}{dx} = \frac{1}{2} \frac{dx}{d\theta}$$

MY ROUGH NOT BROOK T2. T 72 (Opt
$$\phi$$
) 2

from (3)
$$\frac{1}{P^2} = \frac{1}{r^2} \left[1 + \frac{1}{r} \frac{dr}{d\theta} \right]$$

$$= \frac{1}{7^2} \left[\frac{1 + \left(\frac{\text{esin 0}}{1 + \text{e cos 0}} \right)^2}{1 + \text{e cos 0}} \right]$$

$$= \frac{1}{3^{2}} \left[\frac{(1 + e \cos \theta)^{2} + e^{2} \sin^{2} \theta}{(1 + e \cos \theta)^{2}} \right]$$

$$= \int_{\mathbb{T}^{2}} \left[\frac{1 + e^{2} \cos^{2}\theta + 2e \cos \theta + e^{2} \sin^{2}\theta}{(e^{2})^{2}} \right]$$

$$= \int_{\mathbb{C}^2} \left[1 + \mathbb{C}^2 + 2\mathbb{C} \cos \theta \right]$$

$$= \left[2 \left(\frac{1+e \cos \theta}{4} + e^2 - 1 \right) \frac{1}{\ell^2} \right]$$

$$= \left[2 \left(\frac{1+e^2 - 1}{8} + e^2 - 1 \right) \frac{1}{\ell^2} \right]$$

Example - Preove that the godal eq. of the curve oute

$$r = a(1 - coso)$$

$$\frac{\rho^2 = v^3}{2a}$$

Given curve eq is
$$r = a (1-coso)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left(a^2 \sin^2 \theta \right)$$

$$= \frac{1 + \alpha^{2} \left(1 - \left(1 - \tau\right)^{2}\right)}{7^{2}}$$

$$\frac{1}{p_2} = \frac{1}{8^2} \frac{-1}{\gamma_2} + \frac{280^2}{0.74}$$

$$\frac{1}{\rho^2} = \frac{2a}{7^3}$$

$$\frac{p^2 = -\frac{\chi_3}{2a}}{2a}$$

Hence Proved

Ex. Find the angle b/w the readily vertor & Tangent et a point of the curve $r = a(1-\cos \theta)$ $\frac{dr}{d\theta} = a\sin \theta$

"We know that, $tan \phi = r tr do = a(1-cos 0)$ as in o

 $= 2 \sin^2(0/2)$ $2 \sin(0/2) \cos(0/2)$

 $tan \phi = tan \theta$

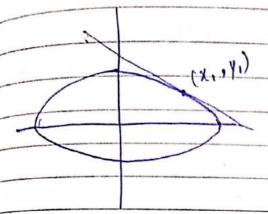
Ex. Find the pedal eq. of the curve asteroid Given curve eq. $x^{2/3} + y^{2/3} = \alpha^{2/3}$

Parametric form, Let x = a cos3+

$$y = Ba sin^3t$$

$$y - a sin^3t = dy (x - a cos^3t)$$

$$dx$$


 $\frac{dx = -3\alpha \cos^2 t \sin t}{dt} \qquad \frac{dy = 3\alpha \sin^2 t \cos t}{dt}$

MY ROUGH NOTE BOOK $\frac{dy}{dx} = -\frac{\sin^2 t}{\cos^2 t} \frac{\cos t}{\sin t} = -\tan t$

```
Date:____Page no:
        Eq of tangent,
      o = a cos3t tant - x tant + a sin3t
              Length of perpendicular
                                        a sin3t + a tant cos3 t
                                                 1 1 + tan2 +
                                  b = a sin3t + a sint cos2t
                                  p = a sint \left[ sin^2 t + cos^2 t \right]
                                                 Sect t
                                  b = a sint cost
" We know
                    a^2 = a^2 (\cos^3 t)^2 + a^2 (\sin^6 t)
                            a^{2} \left[ \cos^{6}t + \sin^{6}t \right]
a^{3} \left[ \cos^{4}t + \sin^{2}t \right] \left[ \cos^{4}t + \sin^{4}t - \cos^{2}t \sin^{2}t \right] - a^{2}b
                           a2 cos4 t + sin4t - cos2 t sin2t ]
                             02 (cos2 tto sin2t)2- 43 cos2 t sin2t)
                           a^{2} \left[ 1 - 3 \cos^{2} t \sin^{2} t \right]
                    r^2 = a^2 - 3p^2
                                which is req. pedal eq. of the given curve.
 Example -1 find the pedal eq. of the curve
a\theta = (\tau^2 - a^2)^{1/2} - a \cos^{-1} a
                                     \frac{1}{p^2} = \frac{1}{3^2} + \frac{1}{2} \left( \frac{a^2}{\gamma^2 - a^2} \right) \frac{1}{3^2}
    B.3 Priore that the pedal eq of an ellipse \alpha^2 + \gamma^2 = 1 is

MY ROUGH NOTE BOOK
\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} - \frac{x^2}{a^2 b^2}
```

By of tangent of an ellipse at (x, y) is

Eq. of tangent at (x,y) on ellipse is

$$y-y_1 = dy (x-x_1) - 0$$
and curve eq.

Differentiating @ w.4.t. so, we have $\frac{9x}{0^2} + \frac{2y}{h^2} \frac{dy}{dx} = 0$

$$\Rightarrow \frac{dy = -x}{dx} \frac{b^2}{y} \frac{a^2}{a^2}$$

Putting value in O

$$\frac{y-y_1 = -b^2x}{a^2y} \left(x-x_1\right)$$

$$\frac{(y^2 - yy)}{b^2} = (-x^2 + yx)$$

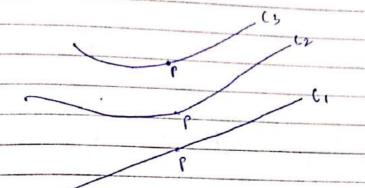
$$\Rightarrow 1 = \frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 3 \quad (\text{Ry } 0)$$

(a coso, b sino) satisfy eq 0

Curive passes through (a coso, b sino). By 3 eq tangent passes through (a coso, baino) 02 = a cos 0 +

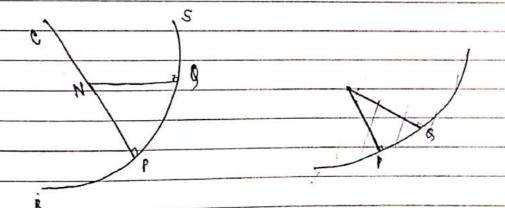
$$\alpha$$
 coro, $y \sin \theta = 1$

bx cos 0 + ay sin 0 = ab


length of perpendicules from origin on tangent (3) = 1 - ab1. $b^2 400^2 0 + a^2 4in^2 0$

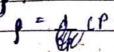
SHREE NAVNEET
$\Rightarrow \int = b^2 \cos^2 \theta + a^2 \sin^2 \theta$ $\Rightarrow \int e^2 db^2$
Since we know that $y^2 = x^2 + y^2$
$y^2 = a^2 \cos^2 0 + b^2 \sin^2 0$
$\Rightarrow 3^2 = a^2(1-\sin^2 0) + 4b^2(1-\cos^2 0)$
$\Rightarrow y^2 = a^2 + b^2 - a \sin^2 0 - b^2 \cos^2 0$
Put values in eq. 5 = 1 = \alpha^2 + b^2 - \gamma^2
P= a262 a262
$\frac{1}{b^2} = \frac{1}{b^2} + \frac{1}{a^2} - \frac{y^2}{a^2b^2}$
b^2 a^2 a^2b^2
$\Rightarrow 1 = \frac{1}{a^2} + \frac{1}{b^2} - \frac{y^2}{a^2b^2}$
which is pedal eg of the given curve

Curvature


Measurement of the bend in curve is called Curvature in the above figure.

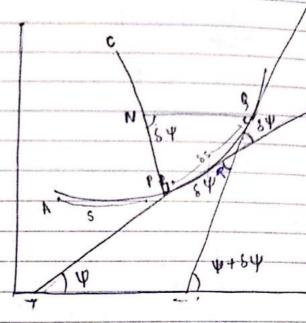
C, has curvature o but C, and Cz have wwwww.ce

Jefinition.


Now draw normal on P and g which meets at N.

of g tends to p then N fends to L. In that case c is called centre of curvature and CP is called Radius of curvature at point P on curve

Respected of distance CP is called problems of curvature and


ledin of whother the is denoted by

arvatuse, K = 1

A circle whose radius is CP then the circle is called circle of MYROUGH Patholive. and a short from a point P in circle is called CHORD OF CURVATURE.

Formula for Radius of Curvature

In s PON

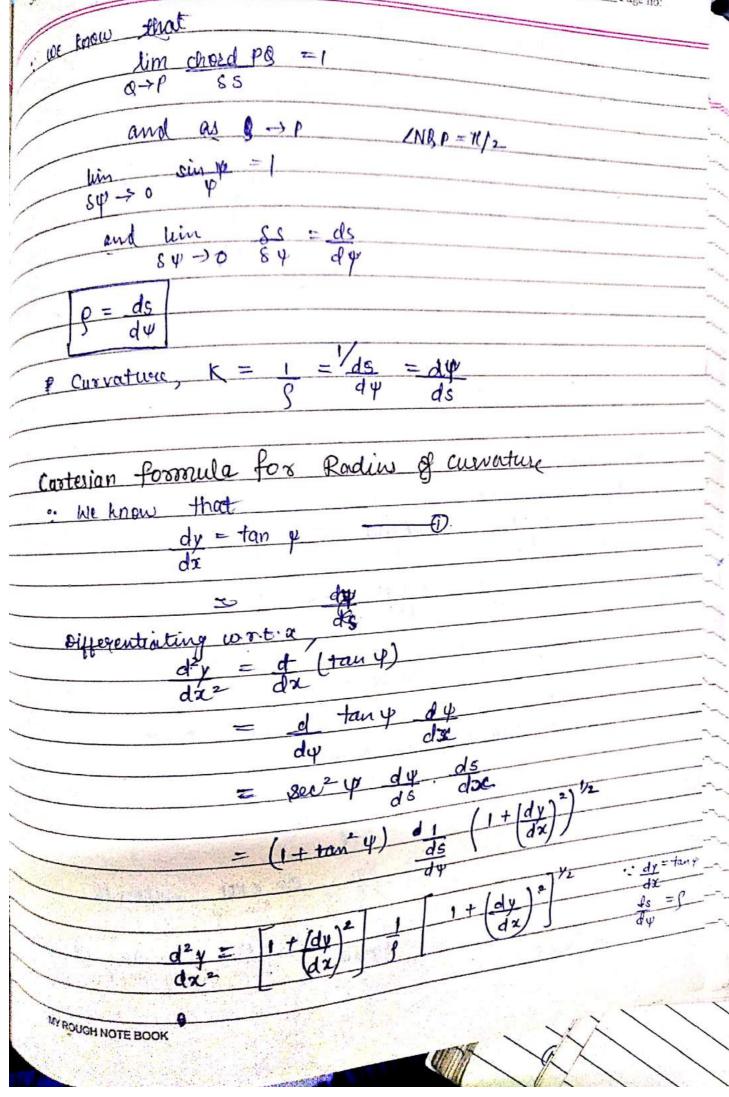
By sine formula.

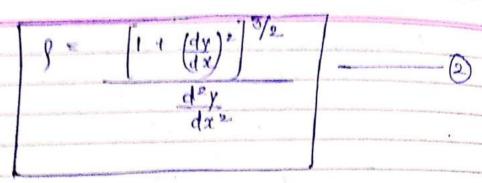
sin (N99) = chord PB sin (N99) PN

thord PQ sin CONSPSY

40 $q \rightarrow p$ $\psi \rightarrow 0$ and $N \rightarrow c$

Therefore reading of unwature


g = CP


= lim PN 9+P

= lim sin 1 Nge . . chord PQ 5 4 ->0 sin sy

= luin chord Pg SS SY Sinsy

to gove

by y then & becomes

[1 + dx] 2] 3/2

dex

dy. If we replace

Eq. (8) is applicable for when tangent is possible to Y-axis.

Curvature for Parametric form Radius of

$$x = x(t)$$
 § $y = y(t)$

Let cuowe eq. in forametric form is $x = x(t) \qquad \text{for } y = y(t)$ $t = dx = x' \qquad \text{and} \qquad dy = y'$ Also let dx = x'

: we know that radius of currecture

$$\frac{1 + \left(\frac{dx}{dx}\right)}{\left(\frac{d^2x}{dx}\right)}$$

dt Now dx dx

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{y'}{x'} \right) = \frac{d$$

$$\frac{d^2y}{\text{MY ROUGH NOTE BOOK}} = \frac{x'y'' - x''y'}{(x')^2} = \frac{x'y'' - y'x''}{x'}$$

Putting values ein D we have $S = \left[1 + \frac{y^2}{x^2} \right]^{\frac{3}{2}}$

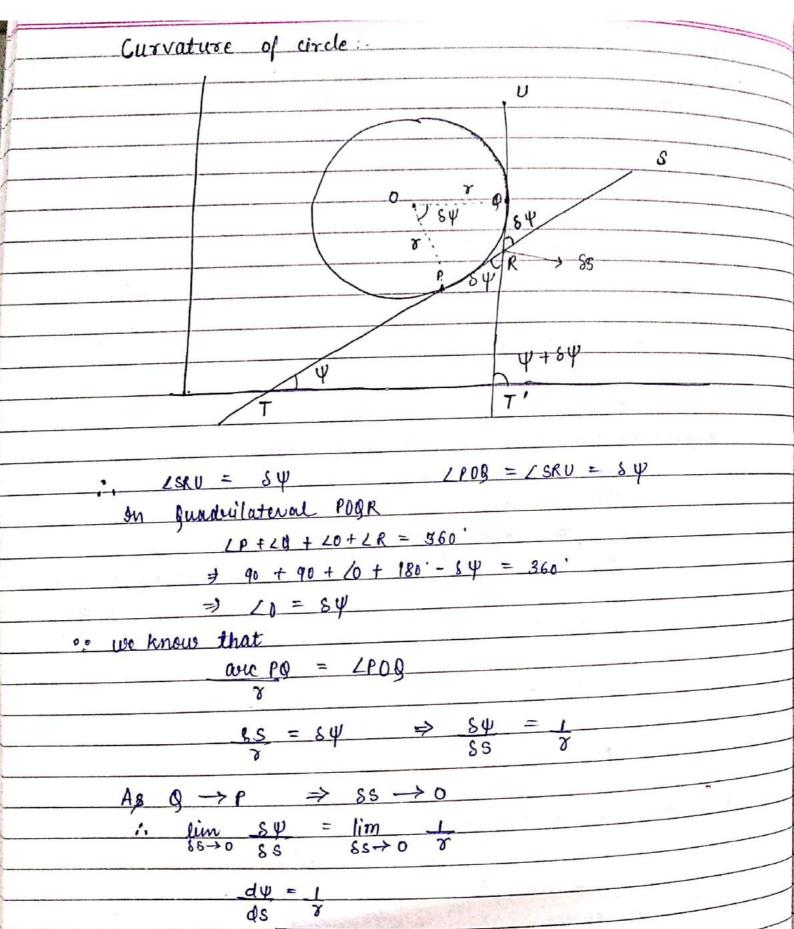
 $\frac{x'y''-y'x'}{x'}$

Formula for Radius of Convature when x and y both are form of S.

" We know that cos y = dx

 $\& \quad \sin \psi = dy$

Differentiating 0 wr.t. s of 0 and 6, we have $\frac{d}{d\psi} (\cos \psi) \frac{d\psi}{ds} = \frac{d^2x}{ds^2}$


 $\frac{-1\sin\psi}{s} = \frac{d^2x}{ds^2}$

(g = ds) -

 $\frac{\cos \varphi \, d\psi}{ds} = \frac{d^2 y}{ds^2}$

CON # = d2y

 $\frac{2q \cdot 3^2 + eq \cdot 4^2}{\int_{a}^{2} \left(\frac{d^2y}{ds^2}\right)^2} + \frac{2}{\left(\frac{d^2y}{ds^2}\right)^2}$

frample Show that for the curve 9= e 2/c $CP = S\sqrt{S^2-C^2}$ Given curve eq. $S = e^{X/C} - O$ T = d (6x/c) $= d e^{x/c} dx$ = $\int_{c}^{c} e^{x/c} dx$ ds = comp 1 = 1 8 cos 4 S = csecy -6 Differentiating @ w.r.t. 4 , we have ds = c sery tany f = c s . \sec^2 y -1 By (2) and g = ds dyP = S 182-C2 CP = 5 VS2-C2 I show that the reading of convature at a pt. is (a cos 30, a sin 30) on the curve $x^{2/3} + y^{2/3} = a^{4/3}$ is 3a sin 20 Given surve $x^{2/3} + y^{2/3} = 0^{2/3}$ Parametric form of 0, $x = 0 \cos^3 \theta$ $y = a \sin^3 \theta$ MY ROUGH NOTE BOOK

```
: We know that radius of convature
                                              y' = dy
              when x'=dx
                                              y'' = \frac{d^2y}{dx^2}
                       x'' = \frac{d^2x}{db^2}
                dx = 3\alpha \cos^2 \theta \quad (-\sin \theta)
Now
                      = - 3 a sin o cos 2 0 = 2'
                 \frac{dy}{d\theta} = 3 a \sin^2 \theta \cos \theta = y'
                 \frac{d^2x}{d\theta^2} = -3a \left[ -2 \sin^2 \theta \cos \theta + \cos^2 \theta \right] = x''
                \frac{d^2y}{db^2} = 3a \left[ -\sin^3 0 + 9\sin 0 \cos^2 0 \right] = y''
    -3asino cos2 0 [3a(-sin30 + 2 sino cos2.0)]
                        - (3a) [-2 sin'o coso + cos3] [3a sin'o coso]
                 30 Sin B cos 0 [- cos 0 (- sin 30 + 2 sin 0 cos 0)] + Sin B [ 3 sin 20 cos 0]
             3 a sino coso?
                                     [cos 20 +17 3/2
                                       1 -2 Dun 20 + coso) + -2 Dun 20 + coso)
      = [9a^{2} \sin^{2} \theta \cos^{2} \theta]^{3/2} [\sin^{2} \theta + \cos^{2} \theta]^{3/2}
         = 9 02 sind coso [- cos 0 sin 30 + 2 sin 0 cos 30 + 2 sin 30 cos 0 - sin 0 cos 30
          -3a sin 20 cos 20
                                                     = -3a sin 0 cos
          \frac{-3a \sin^2 \theta \cos^2 \theta}{\sin^3 \theta \cos^3 \theta + 2 \sin \theta \cos^3 \theta} = \frac{-3a \sin \theta \cos^2 \theta}{\sin^2 \theta + 2 \cos^2 \theta - \cos^2 \theta}
   P = 3a Sin 20
                                                           : sin20 = 2 sin0 cos0
                                      Hopo
```

S (0,0)

that the readius of curvature at any point p on the parabola $\sqrt{2} = 4 \alpha x$ $\sqrt{2} = 4 \alpha x$

 $y^2 = 4ax$ 2y dy = 4a

 $2 \frac{dy}{dx} = 40$

 $\frac{dy}{dx} = \frac{2a}{y} = 0$

 $\frac{d^2y = -2a}{dx^2} \frac{dy}{y^2} = -\frac{4a^2}{dx} - 2$

तुत्र =

 $\beta = \begin{bmatrix} 1 + 4a^2 \\ y^2 \end{bmatrix}$

 $\int = [y^2 + 40^2]^{3/2} - 3$

 $SP = \sqrt{(x-a)^2 + (y-0)^2}$

 $=\sqrt{(x-\alpha)^2+y^2}$

 $= \sqrt{(21-\alpha)^2 + 40x}$

SP = x+0

 $\int = \frac{4ax + 4a^2}{4a^2}$ WYROUGH NOTE BOOK

neglecting - ve sign since radius \(\neq - ve

from (1)

$$\beta = \frac{[4a]^{3/2}}{4a^2} \left[x + a \right]^{3/2} \\
= \frac{8 a^{3/2}}{4a^2} (SP)^{3/2}$$

$$\beta = \frac{2 (SP)^{3/2}}{\sqrt{a}}$$

Show that the radius of curvature at any point (x,y) on the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ is three times the length of the perpendicular from the origin on the tangent at that pto

$$\frac{x^{2/3} + y^{2/3} = 0^{2/3}}{\sqrt[3]{x^{-1/3}} + 2 y^{-1/3}} = 0$$

$$\frac{\partial - y^{1/3}}{x^{1/3}} = \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x}$$

$$+ 1 x^{-\frac{1}{3}} y^{\frac{1}{3}} - 1 y^{-\frac{2}{3}} x^{-\frac{1}{3}} dy = d^{2}y$$

$$\frac{1}{dx^{2}} = \frac{1}{3} x^{-\frac{1}{3}} y^{\frac{1}{3}} + \frac{1}{3} y^{-\frac{2}{3}} \frac{1}{3} y^{\frac{1}{3}} \frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}}$$

$$= \frac{1}{3} x^{-\frac{4}{3}} y^{\frac{4}{3}} \left[y^{\frac{2}{3}} + x^{\frac{2}{3}} \right]$$

$$= 1 x^{-4/3} y^{-1/3} a^{2/3} - 3$$

: ladius of curvertuse,
$$f = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}$$

$$\int = \left[\frac{1 + y^{2/3}}{X^{2/3}} \right]^{3/2} \qquad \left[\frac{A^{2/3}}{X^{2/3}} \right]^{3/2} \qquad \text{By } 0$$

$$\frac{1}{3} x^{-4/3} y^{-1/3} a^{2/3} \qquad \frac{1}{3} x^{-4/3} y^{-1/3} a^{2/3}$$
MY ROUGH NOTE BOOK

$$= 3 \frac{q}{x} x^{-4/3} y^{-1/3} q^{2/3}$$

$$= 3 q^{1/3}$$

$$= 3 q^{1/3}$$

$$(y-y) = -\left(\frac{y}{x}\right)^{y_3} (x-x)$$

$$y - y + (y)^{y_3} (x - \infty) = 0 - 5$$

$$p = \left(\frac{-y}{x} - x \left(\frac{y}{x} \right) \right)^{\frac{1}{3}}$$

$$\sqrt{\frac{(4)^{2/3}}{x}} + 1$$

$$= y^{2/3} + 3c^{2/3} - y^{2/3} + x^{2/3}$$

$$y^{-1/3} - x^{2/3}$$

$$= \frac{y^{3}a^{3}}{\left(a^{2/3}\right)^{1/2}}$$

$$\frac{\left(\frac{\alpha^{2/3}}{\chi^{2/3}}\right)^{1/2}}{\left(\frac{\alpha^{2/3}}{\chi^{2/3}}\right)^{1/2}}$$

$$= y^{1/3} a^{2/3} x^{1/3}$$

$$p = (a \times y)^{1/3} - 6$$

Show that the curve s=alog tan($\frac{\pi}{4} + \frac{\psi}{2}$) + a tan ψ sec ψ have radius of curvature $\int = 2a \sec^3 \psi$ and hence show that
P= 2 a sec 4 and hence show that
dey = 1 And only that 1.5
$\int = 2a \sec^3 \psi$ and hence show that $\int \cdot E \cdot i \cdot satisfied$ $dx^2 = 1 \text{find} \text{or one that} b \cdot E \cdot i \cdot satisfied$ $dx^2 = 2a \text{by the parabola.} x^2 = 4ay$
we know that 10. g = ds -0
σΨ
wwe eq s = a log tan (11 +4) + a tamp sec y - 2
$\frac{ds}{d\psi} = \frac{\sec^2\left(\frac{y}{y} + \frac{y}{2}\right)}{\cot\left(\frac{y}{y} + \frac{y}{2}\right)} \left(\frac{1}{\alpha}\right) + \frac{a \sec^2\psi \sec\psi}{\cot^2\psi \sec\psi}$
dy tan/ 1+4) (2) + a sec y sec y
t a tan y secy
$\frac{ds}{dy} = \frac{1}{\sqrt{\frac{1}{y} + \frac{y}{2}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}} + \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}} \frac{1}{\sqrt{\frac{11}{y} + \frac{y}{2}}}} \frac{1}{$
1 (4/2) (4/2)
$= \frac{a}{\sin\left(\frac{\Pi}{2} + \Psi\right)} + a \sec \psi \left[\sec^2 \psi + \tan^2 \psi \right]$
$\frac{1}{2} + \frac{1}{4}$
= a sery [1+ tan2 y + ser2 y]
= a su y [su²y + su²y]
dy
" We know that
7 7/
$\int = \left \frac{1 + \left(\frac{dy}{dx} \right)^2}{\left(\frac{dx}{dx} \right)^2} \right ^{\frac{1}{2}} = \frac{2a \sin^3 y}{a \sin^3 y}$
d24
dx 2
The second secon
dx 2

$$\frac{\left[1 + \left(\tan y\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}} = 2\alpha \sec^3 y$$

$$\frac{dx^{2}}{2} = 2a x e^{3} y$$

$$\frac{d^{2}y}{dx^{2}}$$

$$= \frac{d^2y}{dx^2} = \frac{1}{2a}$$

$$d_{2x} = 4a \frac{dy}{dx}$$

$$\frac{3c}{2a} = \frac{dy}{dx}$$

$$\frac{1}{2a} = \frac{d^2y}{dx^2} = \frac{5}{3}$$

For find the radius of cuswature of pollium
$$x^3 + y^3 = 3xya$$
at the for $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ $f = 3\sqrt{3}a$

$$g = \left[\frac{1}{2} + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}$$

$$\frac{d^2 y}{dx}$$

 $3x^{3} + y^{3} = 3axy$ $3x^{2} + 3y^{2} = 3ax + 3ax$. Given $\frac{dy}{dx} = \frac{x^2 - ay}{qx - y^2}$ $\frac{dy}{dx} = \frac{9a^2/y - 3a^2/z}{3a^2/z - 9a^2/y}$ $\left(\frac{\partial x - a \, dy}{\partial x}\right) \left(\frac{\partial x - y^2}{\partial x}\right) = \left(\frac{a - 2 \, dy}{\partial x}\right) \left(\frac{x^2 - ay}{\partial x}\right)$ $\frac{3a^{2}-9a^{2}}{4}-\frac{(a+3a)(9a^{2}-7a^{2})}{4}$ (Jata) (302)2 = -32 MY ROUGH NOTE BOOK - 8a 3a2/4

$$\int = \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}$$

$$\frac{\ell^2 y}{dx^2}$$

$$= -\left[1 + (-1)^2\right]^{3/2} - \left(-\frac{32}{3a}\right)^{3/2}$$

$$= \sqrt[2]{32} (3a)$$

$$\beta = 3\sqrt{2}\alpha$$

Neglect - re sign

$$\left(\frac{2\beta}{\alpha}\right)^{2/3} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{y}\right)^2$$

$$\frac{dy}{dx} = \frac{\alpha(\alpha+x)}{(\alpha+x)^2} - \frac{\alpha^2}{(\alpha+x)^2} = \frac{y}{x^2}$$

$$\frac{d^2y}{dx^2} = \frac{dy}{dx^2} + \frac{2xy}{2x^4} = \frac{y-2xy}{2x^4}$$

$$0 = \left[1 + y^2 \right]^{3/2} = \left[x^4 + y^2 \right]^{3/2} = y - 2xy$$

$$= \left[\frac{x^{4} + y^{2}}{3c^{2}} \right]^{\frac{3}{2}} \frac{1}{x^{2} + 2xy}$$

Formula for Pedal Equation

of lite know that

Let pedal eq. of the cuowe is

.. we know that

Differentiating wrt 5,

$$= \int \left[\sin \phi + r \, d\phi \right] \cos \phi$$

=
$$\frac{1}{2} \frac{d}{dx} \left[r \sin \phi \right]$$

$$\frac{b}{1} = \frac{a}{1} \frac{a}{a}$$

$$\Rightarrow \qquad \beta = \gamma \frac{d\gamma}{d\rho}$$

Radius of curvature for polar page.

Les curue eq in polar form x = f(0) -

: We know that

$$\frac{1}{p^2} = \frac{1}{y^2} + \frac{1}{y^4} \left(\frac{dy}{d\theta} \right)^2 = \frac{2}{3}$$

Also we know that

g = 8 dr

dp

$$f = r dr - G$$

$$\frac{dp}{ds} = \frac{p^3}{r^5} \left[\begin{array}{ccc} s^2 + \vartheta \left(\frac{dr}{d\theta} \right)^2 & - v \frac{d^2r}{d\theta^2} & \frac{dr}{d\theta} \end{array} \right]$$

$$\frac{ds}{dp} = \frac{3^5}{p^2} + \frac{1}{3^4} \left(\frac{ds}{d\theta} \right)^2 - \frac{3}{3} \frac{d^2s}{d\theta} - \frac{3}{3} \frac{d^2s}{d\theta}$$

$$\frac{1}{p^2} = \frac{1}{3^2} + \frac{1}{3^4} \left(\frac{ds}{d\theta} \right)^2 - \frac{3}{3} \frac{d^2s}{d\theta} - \frac{3}{3} \frac{d^2s}{d\theta}$$

$$\frac{\text{(Hom 2)}}{\text{Pi}} = \frac{1}{\sigma^2} + \frac{1}{\sigma^4} \left(\frac{d\sigma}{d\theta} \right)^2$$

$$\Rightarrow 1 = \left[\frac{1}{\sigma^2} + \frac{1}{\sigma^4} \left(\frac{d\sigma}{d\theta} \right)^2 \right]$$

Putting value of
$$p : m(y)$$
 $= \left[\frac{1}{\delta^2} + \frac{1}{\delta^4} \left(\frac{dx}{d\theta}\right)^2\right]^{\frac{3}{2}}$

Now from 3)

$$\beta = \delta \frac{ds}{dp}$$

$$= 3^{6} \qquad 1$$

$$p^{3} \qquad r^{2} + 2 \left(\frac{dr}{d\theta}\right)^{2} - r \frac{d^{2}r}{d\theta^{2}}$$

$$= \gamma 6 \left[\frac{1}{\gamma^2} + \frac{1}{\gamma^4} \left(\frac{d\gamma}{d\theta} \right)^2 \right] \frac{3/2}{\gamma^2 + 2 \left(\frac{d\gamma}{d\theta} \right)^2 - \gamma \frac{d^2 \gamma}{d\theta^2} \right]$$

$$\int z \left[\frac{\partial^2 + (dr)^2}{\partial \theta} \right] \frac{\partial^2 z}{\partial \theta} = \frac{1}{\tau^2 + 2\left(\frac{dr}{d\theta}\right)^2 - \tau \frac{d^2r}{d\theta}}$$

Formula for Radius of Curvature for Tangential Polar Eg

$$g = \frac{ds}{d\psi} = \frac{rdr}{d\rho}$$

$$\frac{dp}{d\phi} = \frac{dp}{d\phi} \cos \phi \int$$

$$\frac{dp = dp \cos p \quad rdr}{dp} \quad \left[by \oplus \right]$$

$$\Rightarrow \frac{dp}{d\psi} = 3\cos\phi \qquad \qquad (2)$$

Also, we know that p = & sin \$

Now
$$0^{y} + 3^{z}$$
, we have
$$y^{2} = p^{2} + \left(\frac{dp}{dp}\right)^{2} - \frac{q}{2}$$

$$= 2p + \frac{d}{d\psi} \left(\frac{dp}{d\psi} \right)^2 \frac{d\psi}{d\rho}$$

$$= 2p + 2 dp d^2p dy$$

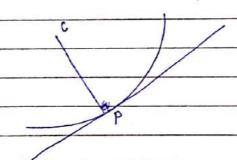
$$d\psi d\psi^2 dp$$

$$\frac{y \, dy = p + d^2p}{dp} \quad d\psi^2$$

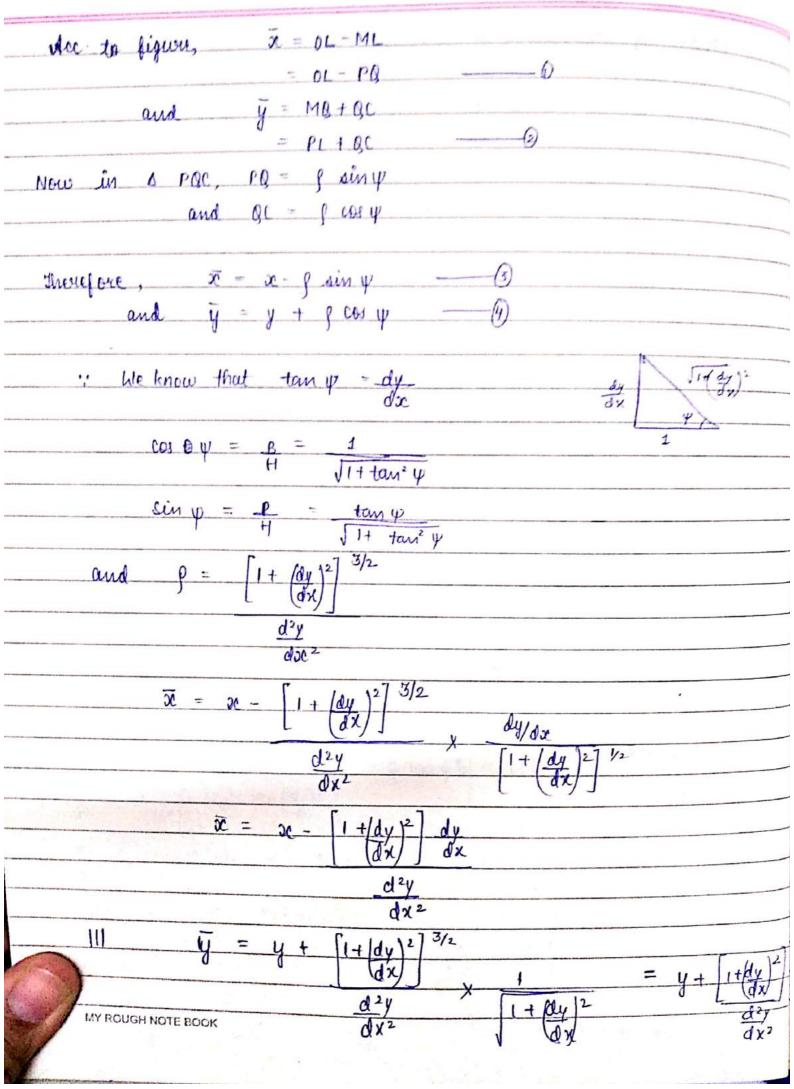
$$\Rightarrow \beta = p + d^2p$$

$$d\psi^2$$

from eq O

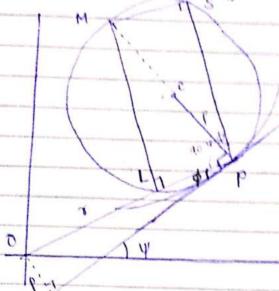

Course	Fundamental	Definitions
CUITIE	TUNDUM EMI	

a centre of curvature:


i) Circle of Curvature:

iii) chard of curvature: can have infinite no of chord of survature

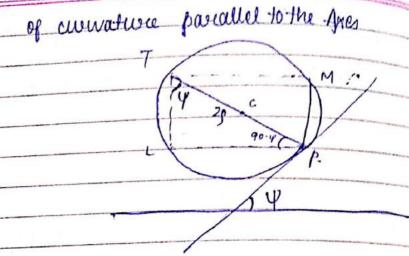
iv) Evalute: The locus of centre of surventure of the surve is said to be evalute and the curve is called sovalute of its evalute



Coordinates of Centre of Curvature

Length of the corord of the coverative

a) Length of the curvature through the Pole.

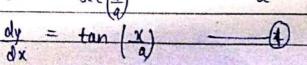

length of the chord passes through Pole PL = & p sin o We know that p = & sin \$

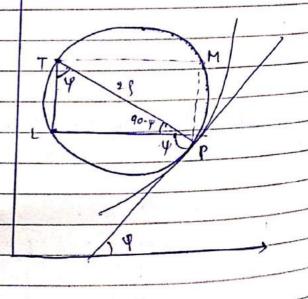
PL = 29 Pg

length of the chord of curveture perpendicular to radial vector SP = ap cos p

> p= & sin \$ cos d = VI sin, b

c)	len	ath-	Of	the		choice
	PL	- 0	2 1	sin	4	
PM =	LT	2	P .	CADA	4	


&x- have that the chard of annature parallel to y axis of the anne $y = a \log \left[\sec \left(\frac{x}{a} \right) \right]$ is of constant length


bliven come $y = a log \left[sec \left(-x \right) \right]$

sorallel to Y axis i.e.

Also we know that

radius of curvature $\beta = \left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}} / \frac{dy}{dx^{2}}$ $\frac{dy}{dx} = \frac{a}{sec}(x/a) + \tan(x/a) \frac{1}{a}$

Again differentiate (1) wrt. x.

Putting value in (3)

MY ROUGH NOTE BOOK $\beta = \left[1 + \tan^2(x)\right]^{\frac{3}{2}} = \frac{1}{9} \sec^2(x) \Rightarrow \alpha \sec(\frac{x}{\alpha}) = \beta - 6$

We know that
$$tan \psi = dy$$

from eq. (4)
$$tan \varphi = tan(x)$$

$$\Rightarrow \psi = \frac{x}{a}$$

$$\therefore \quad \text{Cey } \psi = \int_{-1}^{1} \frac{1}{(dy)^2}$$

$$\frac{dy}{dx} \qquad \frac{dy}{dx}$$

$$\frac{1}{\tan w} = |dy|$$

$$\cos \psi = \frac{1}{\cos x}$$

$$= 2 a \sec(\frac{x}{a}) \frac{1}{\sec(\frac{x}{a})}$$

Example > Find the eq. of circle of curvature of the surve to
$$y = x^3 + 9x^2 + x + 1 - 0$$
 for the point $(0,1)$

$$\frac{dy}{dx} = 3x^2 + 4x + 1$$

$$\frac{dy}{dx} = 3x^2 + 4x + \frac{1}{2}$$

$$\frac{dy}{dI}$$
 = 1

$$\frac{d^2y}{dx^2} = 6x + 4$$

: we know that Radius of convotive

$$f = \left[1 + \frac{f(y)}{dx} \right]^{3/2} \div \frac{d^2y}{dx}$$

$$\int = \frac{1}{\sqrt{2}}$$

Also we know that

$$\bar{x} = 0 - 1 = -1$$

$$\frac{111}{y} = \frac{y + \beta \cos y}{y} = \frac{3}{1 + \frac{1}{2}} = \frac{3}{2}$$

$$\left[x - \frac{1}{2}\right]^{2} + \left(y - 3\right)^{2} = p^{2}$$

$$x^{2} + \frac{1}{4} + 2x + y^{2} + 9 = 3y = 1$$

$$x^{2} + y^{2} + 2x - 3y + 2 = 0$$

$$x^2 + y^2 + 2x - 3y + 2 = 0$$

Ex: If G and by be the choids of cusualive parallel to the axis respect of any point of the cusue y = 0 e x/9, then prove that

 $\frac{1}{C_x} + \frac{1}{C_y} = \frac{1}{2\alpha C_x}$

Given curve eq.

y = a e x/a - 0

Ace to diagram,

Ce = & f sin y — 2

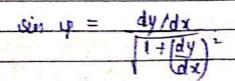
Cy = 2 f cox y = length of chord -(3)

11 to yaxis

we know radius of wowature

$$f = \left[\frac{1 + \left(\frac{dy}{dx} \right)^2}{3/2} \right]^{3/2}$$

de 1/0x=


 $\frac{dy}{dx} = \frac{0}{2} e^{\frac{x}{2}} \frac{1}{2} = e^{\frac{x}{2}} e^{\frac{x}{2}}$

 $||| \frac{d^2y}{dx^2} = \int e^{x/q}$

By Θ , $\rho = \Omega \left[1 + e^{2x/\Delta}\right]^{3/2}$

Note we know that

$$tan \varphi = dy$$
 dx

 $\frac{\cos \psi}{\sqrt{1+\left(\frac{dy}{dy}\right)^2}} = \frac{1}{\sqrt{1+\left(\frac{dy}{dy}\right)^2}}$

By () and ()

$$e_{x} = 2 \int \sin \psi$$

$$= 2 \int \frac{\sin \psi}{e^{x/\alpha}} = \frac{e^{x/\alpha}}{\sqrt{1 + e^{2x/\alpha}}} \times \frac{e^{x/\alpha}}{\sqrt{1 + e^{2x/\alpha}}}$$

$$= 2 \int \frac{\sin \psi}{e^{x/\alpha}} \times \frac{e^{x/\alpha}}{\sqrt{1 + e^{2x/\alpha}}} \times \frac{e^{x/\alpha}}{\sqrt{1 + e^{2x/\alpha}}}$$

$$Cy = 2 \int (\theta) \psi$$

$$= 2 \alpha \left[1 + e^{2\pi/\alpha} \right]^{3/2} \times \frac{1}{\sqrt{1 + e^{2\pi/\alpha}}}$$

$$= 2 \alpha \left[1 + e^{2\pi/\alpha} \right]$$

$$= 2 \alpha \left[1 + e^{2\pi/\alpha} \right]$$

$$= 2 \alpha \left[4 + e^{2\pi/\alpha} \right]$$

LHS.
$$\frac{1}{(x^2 + \frac{1}{(y^2 + \frac{1}{4\alpha^2(1 + e^{2x/\alpha})^2} + \frac{e^{2x/\alpha}}{4\alpha^2(1 + e^{2x/\alpha})^2})}$$

= $\frac{1}{4\alpha(1 + e^{2x/\alpha})}$

$$= \frac{1}{2\alpha \left[2\alpha \left(1 + e^{2x/\alpha}\right)\right]}$$

$$\frac{1}{C_x^2} + \frac{1}{C_y^2} = \frac{1}{2\alpha C_x}$$
 from (3)

a)
$$g \propto \sqrt{r}$$

b) $g(g^2 + g^2) = 16a^2$

extrimities of any chord which passes through the

" We know that

$$\int = \left[\gamma^2 + \left(\frac{dy}{d\theta} \right)^2 \right]^{3/2} \left[\int \frac{1}{\gamma^2 + 2\left(\frac{dy}{d\theta} \right)^2 - \gamma \frac{d^2y}{d\theta^2}} \right]$$

 $ds = -a \sin \theta$ = 2

MY 10 BUGH NOTE BOOK
$$a^2 \sin^2 \theta^2 = a^2 - (r-a)^2 = 2ar - r^2 - 6$$

de.

Put aleque values in (1)
$$\int_{0}^{1} = \left[x^{2} + a^{2} \sin^{2} 0 \right]^{3/2} \left[\frac{1}{x^{2} + 2a^{2} \sin^{2} 0} - 3(a-7) \right]$$

From
$$\Im$$
,
$$P = \frac{[3^{2}+3a3-3^{2}]^{3/2}}{3^{2}+4a3-23^{2}+3^{2}-a3}$$

$$g = \sqrt{8} (\alpha x)^{\frac{3}{2}-1} = \sqrt{8} \sqrt{\alpha x}$$
 - (5)

g & Jo

ii) Let 0 be the pole and

Ox be the initial line

Let PQ be the chord of the curve

passing through the ctrc pole

If P(r,0) then Q(R, 11+0)

Then eq. (5) $g = \frac{2^{3/2}}{3} \sqrt{0} \gamma$

$$f^2 = \frac{8}{9} \alpha x$$

At
$$P(x,0) = \begin{cases} \frac{x}{2} = \frac{\beta}{4} ax \end{cases}$$

At
$$g(R_1 + 1+0) \neq g^2 = gaR$$

New
$$\int_{1}^{2} + \int_{2}^{2} = 80 \left[7 + R \right]$$
MY ROUGH NOVE BOOK

 $\begin{array}{c}
\rho(\pi,0) \\
0 \\
0
\end{array}$

$$\Rightarrow \int_{1}^{2} + \int_{2}^{2} = 16\alpha^{2}$$

$$\Rightarrow 9 \left[\rho_1^2 + \rho_2^2 \right] = 16 \alpha^2$$

Hence Proved.

Attornative

Given curve eq

taking log on both sides

$$\log x = \log \alpha(1+\log 0)$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{-\alpha \sin \theta}{\alpha (1 + \cos \theta)}$$

$$\frac{1}{3}\frac{dr}{d\theta} = -\tan\left(\frac{\theta}{2}\right) \qquad \qquad \tan \phi = rd\theta$$

$$\frac{1}{\tan \phi} = -\tan \left(\frac{\theta}{2}\right)$$

$$\cot \phi = \cot \left(\frac{\pi}{2} + \frac{\theta}{2} \right)$$

$$\phi = \frac{\pi + 0}{2}$$

$$p = \gamma \sin \phi$$

$$p = \gamma \sin \left(\frac{\pi}{2} + \frac{0}{2}\right)$$

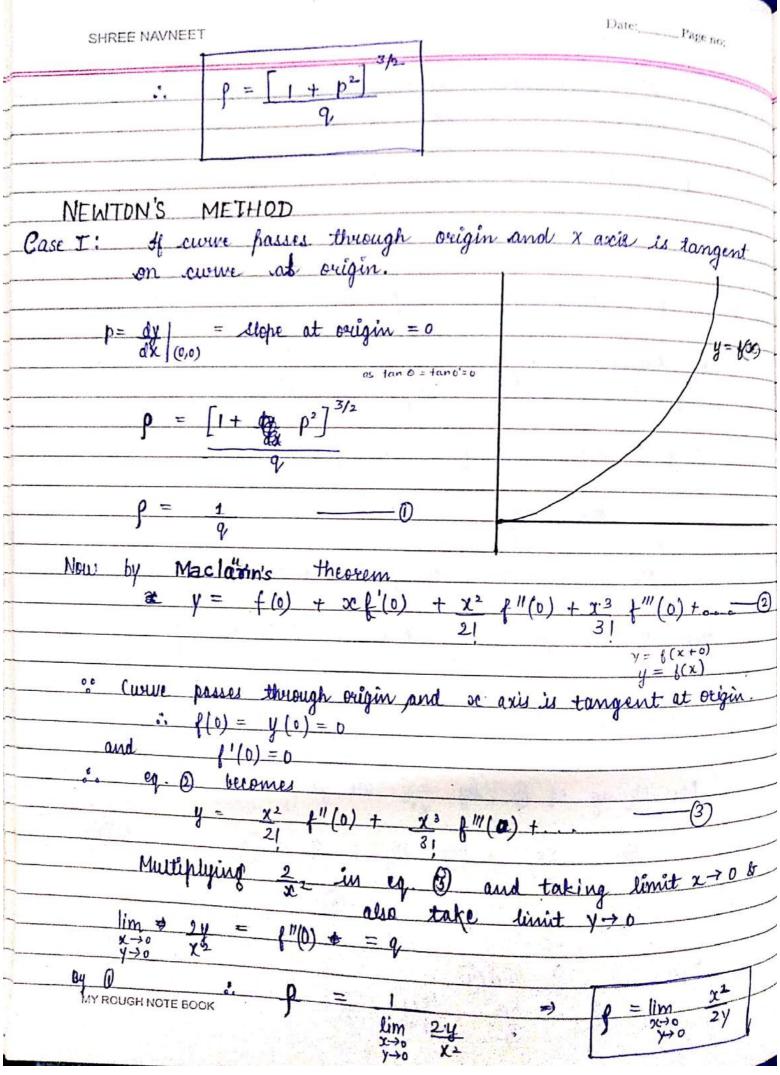
$$b = 8 \text{ sod } 9$$

$$\gamma = a \left(1 + \omega s_0 \right) = 2a \omega^2 g = 2a p^2$$
MY ROUGH NOTE BOOK
$$\gamma = a \left(1 + \omega s_0 \right) = 2a \omega^2 g = 2a p^2$$

From
$$\hat{B}$$
 $r^3 = 2ap^2$

$$3s^2 dr = 4ap$$

$$dp$$


$$\frac{dy}{dp} = \frac{3y}{3y}$$

$$= 4a \sqrt{r^3} \left(\frac{1}{3r}\right)$$

"
$$\sqrt{8a}$$
 = constant

$$\int = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{-3/2}$$

$$q = \frac{d^2y}{dx^2} \Big|_{(0,0)}$$

curve passes through origin and y axis is tangent on curve at origin

: tan 90° = 00

ly Maclawin's expansion

+ x2 f1(0) + x3 f11(0) +-

 $\frac{\chi^{2}}{2}$ $\frac{q}{2}$ + $\frac{\chi^{3}}{31}$ $\int_{0}^{111} (0) + -$

eq. 6 by 1 and taking lim x >0 & y >0

Multiplying eq. 6 by 2 we get (and also take lim x > 0 & y > 0)

 $\frac{2y}{x^2} = \lim_{x \to 0} \frac{2p}{x} + \frac{q}{x} + \lim_{x \to 0} \frac{2}{x^2} \left[\frac{x^3}{3!} \right]^{11}(0) + \dots$

and (4)

P =	lim x-31	<u> 43</u>	γ ²
	y→0	× 3	24
p =	lim x-10	42	
	N→10	207	

of Hounatively

$$\frac{dy}{dx} = \infty$$

We know that

$$\int = \left[\frac{1 + \left(dx \right)^2}{dy} \right]$$

By Maclawin's expansion,

$$x = f(y+0)$$
 $x = f(0) + y f'(0) + y^2 f''(0) + y^3 f'''(0) + y^2 f''(0) + y^3 f'''(0) + y^2 f''(0) + y^3 f'''(0) + y^3 f'''(0)$

$$\frac{f'(0) = dx}{dy}\Big|_{0,0}$$

$$\frac{\partial x}{y^2} = \lim_{x \to 0} \int_{0}^{1} (0)$$

$$\int = 1 = \lim_{x \to 0} \frac{y^2}{y^2}$$

$$\lim_{x \to 0} \frac{2x}{y^2} = \lim_{x \to 0} \frac{y^2}{y^2}$$

$$\lim_{x \to 0} \frac{2x}{y^2} = \lim_{x \to 0} \frac{y^2}{2x}$$

$$\begin{cases}
= \lim_{\substack{x \to 0 \\ y \to 0}} y^2$$

Case III: of come eq in polar form 8= 1(0)

$$\int = \lim_{X, y \to 0} \frac{x^2}{2y}$$

$$put x = x \cos \theta \qquad y = x \sin \theta$$

$$\Rightarrow x = \sqrt{x^2 + y^2}$$

$$\Rightarrow x = \tan^{-1}(y)$$

$$\int_{0}^{1} = \lim_{0 \to 0} \frac{3^{2} \cos^{2} 0}{2 \sin 0}$$

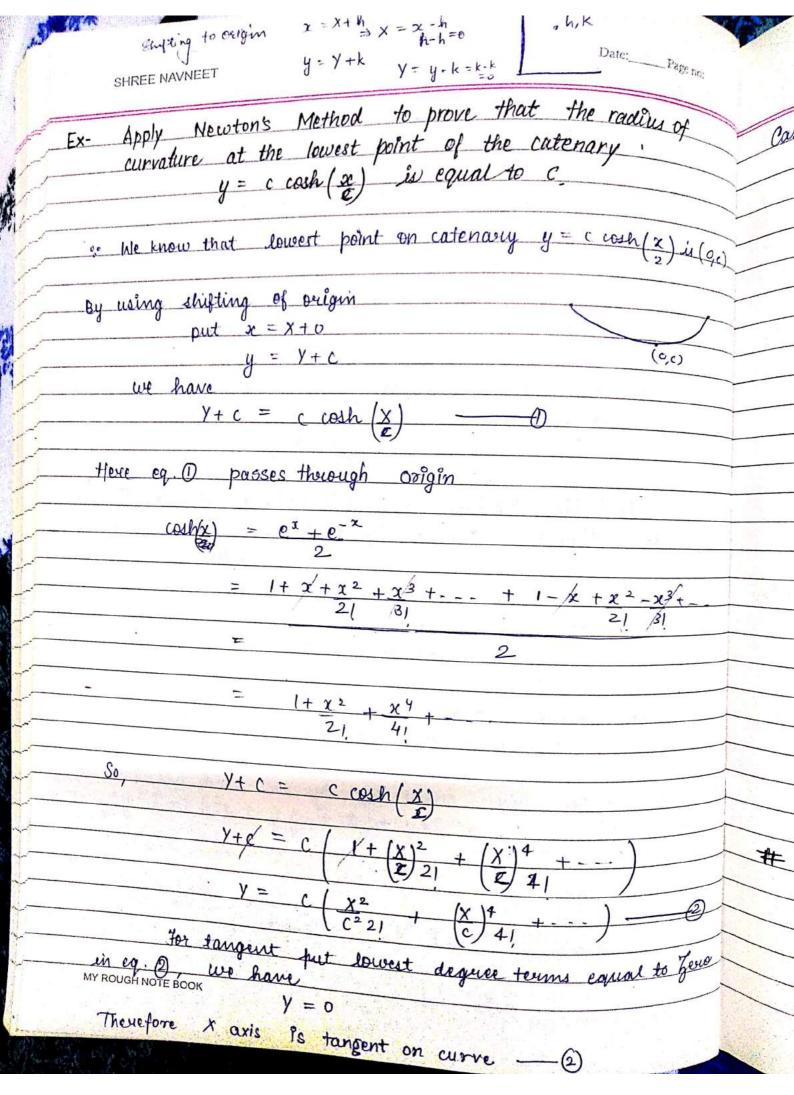
$$\cos \cos 0 = \left(1 - \frac{9^{2}}{21} + \frac{9^{1}}{41} + \dots\right)^{2}$$

$$\frac{1000}{31}$$

$$\int = \lim_{\gamma, 0 \to 0} \chi^{2} \left(\frac{1 - 0^{2}}{2!} \right)^{2} = \lim_{\gamma \to 0} \chi^{2} \left(\frac{1 + 0^{4} - 20^{2}}{4} \right)^{2}$$

$$2 \int \chi(0 - 0^{3}) \qquad 2 \int \chi^{2} \left(0 - 0^{3} \right)^{2}$$

$$\int_{0.000}^{\infty} \frac{1}{20} \sin \frac{\pi}{20} = 0$$


By O radius of reservature can be find out when curve passes through pole and initial line at pole is tangent.

$e^{ix} = \cos x + i\sin x$

$$e^{-ix} = cosx - isln x$$

$$cosx - e^{ix} + e^{-ix}$$

_

$$\beta = \frac{1/m}{x+p} \frac{x^2}{2y}$$

$$\beta = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2}{2C \left[\frac{x^2}{2IC^2} + \frac{x^4}{4IC^4} + \dots \right]}$$

on the know that acc. to shifting of origin radius of accountive does not change. so,

radius of convature, f= c

Ex. Find the Radius of Curvature at the Origin of the Curve $5x^3 + 7y^3 + 4x^2y + xy^2 + 2x^2 + 3xy + y^2 + 4x = 0$

Clearly 6the given curve passes through Origin, So, its tangent x = 0 (lowest degree terms

do tangent is y axis

Since we know that

Radius of cuonature
$$f = \lim_{x \to 0} \frac{y^2}{x^2}$$

So divide given crowe eq. by 2x and fut limit x^{3} : $\frac{5x^{2}}{2} + \frac{7\cdot 11^{3}}{2} + 2xy + 3x + \frac{3}{8}y + 2 + (xx + 1)\frac{y^{2}}{2x} = 0$

$$\int = \lim_{\substack{x \to 0 \\ y \to 0}} y^2 = -2$$

Since p can't be negative

MY ROUGH NOTE BOOK $\beta = 2$

reliated
$$r = a(1-coso)$$

T. $f|_{pole} = 0$

$$cos o = 1$$

$$0 = 0', 2\pi, 4\pi,$$

$$\int_{0,\delta\to0}^{\infty} \frac{1}{20} = \lim_{t\to\infty} \frac{\alpha(1-\cos0)}{20}$$

$$\lim_{t \to a} \frac{f(t)}{g(t)} \qquad \qquad \infty$$

=
$$\lim_{t\to a} \frac{f'(t)}{g'(t)}$$

$$= \lim_{t\to\infty} n(n-1) \frac{t^{n-2}}{et}$$

$$= \lim_{t \to \infty} \frac{n!}{et} = \frac{n!}{et}$$

Advanced Integral Calculus PAGENO .:	
DATE: / /	
Gamma Function	:
n = 500 e-t + n-1 dt Euler's second integral	_
$0) \overline{m} = M-1 \overline{M-1}$	_
if neN then In=(n-1)!	
$\frac{1}{1}\sqrt{\frac{1}{12}} = \sqrt{\pi}$ $\frac{1}{1}\sqrt{\frac{1}{2}} = \sqrt{\pi}$	-
<u></u>	
$+wu \qquad \text{In} = (n-1) \text{ In}-1$	_
$= (N-1) (N-2) \overline{N-2}$	_
$= \frac{(n-1)(n-2)(n-3)\dots 2.1(1)}{} = 1$	_
$= (n-1) (n-2) (n-3) \dots 3.2.1$	
= (N-1)	_
	_
Properties of Gamma Function	
exist. Perone that a) Intl = n[n n>0 Recuvence Formula	~
a) $\ln + 1 = n \ln \frac{n}{n}$,
c) [n+1 = n] Relation blw Gamma Gunetion & factori	_
	1
1) We know that	
$\overline{\ln = \int_0^\infty e^{-t} t^{n-1} dt$	~_
$\boxed{ \boxed{ (n+1)} = \int_0^\infty e^{-t} t^{m+1-1} dt }$	
= 100 t n+1-1 e dt	-9 —
By ILATE (°E,+" p-t) dt	×
By ILATE $= [-t^n e^{-t}]^{\infty} - \int_0^{\infty} (+t^n e^{-t}) dt$	~
	=(
$= \begin{bmatrix} n! \end{bmatrix}^{\infty} \theta - \int_{0}^{\infty} nt^{n-1} \left(-e^{-t}\right) dt$	<u>_</u>
100 n-1 e-t dt	
= 0 + n from 0	-
Inti = nin	

	Ale: 1 /
b) ! to Know that	
$\overline{n} = \int_{0}^{\infty} e^{-t} t^{n-1} dt$	
$II = \int_0^{\infty} e^{-t} t^{\circ} dt$	
= - [e-t] ⁰	
= - [1]*	-51 15-
[et]	17 (4
$= - \left[e^{-\infty} - e^{-0} \right]$	6-0=0
- - [0-1]	E = 00
<u> </u>	
	14114
c)	
: n+1 = n In	
4150 Tn = (n-1)	
$= n (n-1) (n-2) (n-3) \dots 2:1$	Temperation .
= n!	1 1 1117
Gransformation of Gamma function	-
In = 100 c-t +n-1	(4
in the teat — O	la .
[A] Put $t = loo [1]$ in eq. (1)	1 100 10
[A] Put $t = log(1)$ in eq. 0	
$e^{t} = 1$ \Rightarrow $s = e^{-t}$	
1 3-6	* 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	The state of the second property and the second
$t \rightarrow \infty$ $s \rightarrow 0$	The state of the s
Beg D becomes	the same and the same of the s
Tn = -1; [log (1)] n-1 ds	
	the transfer of the same of th
: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) dx
- 1 4 1 m / d a - 1 8 - 6 (2)	1 48

PAGE NO.: DATE: /

$$\Rightarrow In = \int_0^1 \left[\log \left(\frac{1}{8} \right) \right]^{n-1} ds$$

[B] Put
$$t^n = s$$
 in eq. (1)

$$n t^{n-1} dt = ds$$
as $t \to 0$

$$\overline{n} = \int_0^\infty e^{-s^2n} \int_{\overline{n}} ds$$

$$n \operatorname{In} = \int_{0}^{\infty} e^{-s \operatorname{vn}} ds$$

$$\overline{m+1} = \int_0^\infty e^{-s^{2n}} ds$$

[C] Put
$$t = az$$
 in eq. 0

 $at = adz$

as
$$t \to 0$$
 $y \to 0$

as
$$t \to \infty$$
 $y \to \infty$

80q. (1) loecomes
$$\overline{m} = \int_{\infty}^{\infty} e^{-ax} (ax)^{n-1} a dx$$

$$\overline{m} = \int_{\infty}^{\infty} a^{n} e^{-ax} z^{n-1} dz$$

$$\frac{x + y + y}{\ln x} = \frac{x + y}$$

$$\frac{\ln z}{a^n} = \int_0^\infty e^{-at} t^{n-1} dt$$

PAGE NO.: DATE: ds 1 0 0-t2 dt 5 = 0 to 0

PAGE NO .:

```
([V_2)^2 = 4 \int_0^\infty \int_0^\infty e^{-(s^2+t^2)} ds dt
    so,
                                       t = 8 sund
            8 cos 0 = 5
             S-> 0 -> Y-> 00
             500 => 700
```

also
$$s^2 + t^2 = s^2$$

 $tan \theta = \frac{t}{s} \implies \theta = tar'(\frac{t}{s})$

And $ds dt = v dv d\theta$

So,
$$\left(\frac{1}{2}\right)^2 = 4 \int_0^{\frac{1}{2}} \int_0^{\infty} e^{-x^2} v \, dv \, dv$$

$$2x dx = dp$$

$$\left(\begin{bmatrix} \frac{1}{2} \end{bmatrix}^2 = 4 \int_0^{\frac{1}{2}} \int_0^{\infty} \frac{e^{-p}}{2} dp d\theta$$

$$\left(\left[\frac{1}{2}\right]^{2} = 2 \int_{0}^{\pi/2} \left[-\rho^{-\frac{1}{2}}\right]^{\infty} d\theta$$

$$= 2 \int_0^{H/2} \left[-0 + 1 \right] d\theta$$

$$= 2 \left[\theta\right]^{\frac{1}{1/2}} = 2 \times \frac{1}{1/2}$$

$$\frac{\Gamma}{2} = \sqrt{\pi}$$

0

Evaluate

a)
$$\int_{0}^{\infty} \chi^{5} e^{\chi} dx$$

$$\int_{0}^{\infty} e^{-t} t^{n-1} dt$$

$$\frac{10}{10} = \frac{10}{25} = \frac{10$$

In = (n-1)

DATE: / /

 $= \frac{1}{3} \sqrt{10}$ $= \sqrt{10}$

3

 $\int_{-\infty}^{\infty} \sqrt[4]{x} = e^{-\sqrt{x}} dx$ $det = \sqrt{x} = t$ $x = t^{2}$ dx = dt

PAGE NO. : DATE: / / Now, $\int_{0}^{\infty} t^{1/2} e^{-t} 2t dt$ $= 2 \int_{0}^{\infty} e^{-t} t^{3/2} dt$ $= 2 \int_{0}^{\infty} e^{-t} t^{5/2-1} dt$ Th = (n-1) 1 = 2 x 3 x 1 1/2 In = (n-1) [n-1 = 3 / 17 Jo x n-1 [log /1)] m-1 dx det x → 0 → + → 0 x + 1 + + 10. $x = e^{-t}$ $\frac{dx = -e^{-t} dt}{1 = \int_{-\infty}^{\infty} (e^{-t})^{n-1} t^{m-1} (-e^{-t}) dt}$ $= \int_{-\infty}^{\infty} e^{-nt} t^{m-1} dt$ $= \int_{0}^{\infty} e^{-nt} + m^{-1} dt$ nm " In = 100 e-at th-1dt. I= 100 e-nt tm-1 dt nt = u $\frac{n dt = du}{I = \int_{0}^{\infty} e^{-u}}$ $\frac{\binom{n}{n}^{m-1}}{n}$ du = 100 1 e-u um-1 du

	PAGE NO. : DATE : / /
In=	10 e-t this dt
() n-1	dx -0 m>0 n>0
ta fi	metion.
6.4	114
1 3	
ži	
dn dx	
92	
dx .	- I
x	

$$= \int_{0}^{1} (1-x)^{m-1} (x)^{n-1} dx$$

$$= \int_{0}^{1} (1-x)^{m-1} x^{n-1} dx$$

$$= \int_{0}^{1} (1-x)^{m-1} dx$$

$$= \int_{0}^{1} (n,m)$$

nm

=

unction

B(m,n) =

also

Beta

Properties of

SYMMETRY

We know that

tm

nm

known as

B(m,n) = B(n,m)

0 9742

PAGE NO.: DATE: 1 1

$$p(m_1 n) = \int_0^{11/2} (\sin^2 \theta) \, m^{-1} (\cos^2 \theta)^{n-1} (2 \sin \theta \cos \theta) \, d\theta$$

 $p(m_1 n) = 2 \int_0^{11/2} (\sin \theta)^{2m-1} (\cos \theta)^{2n-1} \, d\theta$

Let
$$2m-1=p$$

$$m=0+$$

$$m = p+1$$

$$g_{0}$$
, $\int_{0}^{\pi/2} \sin^{m}\theta \cos^{m}\theta = \frac{1}{2} \beta(\frac{m+1}{2}, \frac{np+1}{2})$

(3) In terms of impropess integrals.
$$p(m_1 n) = \int_0^1 x^{m-1} (1-x)^{m-1} dx$$

Put
$$x = y$$

$$dx = (1+y) - y dy = 1 - dy$$

$$x = y$$
1+y

$$xy \rightarrow 1 \Rightarrow y \rightarrow \infty$$

$$P(m,n) = \int_{0}^{\infty} \left(\frac{y}{1+y}\right)^{m-1} \left(\frac{1}{1+y}\right)^{n-1} \left(\frac{1}{1+y}\right)^{2} dy$$

$$p(m,n) = \int_{0}^{\infty} y^{m-1} dy$$

$$\beta(m,n) = \int_0^\infty y^{m-1} dy$$

$$p(n,m) = \int_{0}^{\infty} y^{m-1} dy = \int_{0}^{\infty} y^{n-1} dx - \int_{0}^{\infty} y^{n-1} dx$$

6112	
-	(1) Relation Between Beta and Gamma function
phia.	$\beta(m,n) = \lim_{m \to \infty} \int_{m} f_m$
and the same of	lm+n
Trans.	" the know that
Personal Property	$\frac{t_n}{a^n} = \int_a^{\infty} e^{-at} t^{n-1} dt$
der e	
No.	$rn = 1$ an $e^{-at} + n^{-t} dt$
1	Multiply both sides by e-a am-1 The p-a am-1 - for am+n-1 e-a(t+1) +n-1 dt
100	
100	Integrating both sides bow the limits o to so
90	In 100 pamida = 100 for amond pa(+1) +11-18dt/da
-	/ 90 . m-l
1	= for t n-1 { ja am+n-1 e-a(t 1) da } dt
A.	let a(1++)=y
1	as $t \to 0$ $y \to 0$
	t-10 y-0
	(1+t) da = dy
	ds, In 100 e-a am-1 da = 100 + n-1 { 100 (x) min-1 e-y dy } dt (1+t)
	-100 +N-1 (ITC))
-	(+t)m+n { o ym+n-i ey by } ol
-	I F I M I M I
	THE DO E X dX
	In [m =] the [m+n] dt
!-	$= \underline{\text{Im+n}} \int_{0}^{\infty} \frac{t^{n-1}}{(1+t)^{m+n}} dt$
	$\ln \lceil m - \lceil m + n \rceil \beta(n, m)$
	$\vdots \beta(m,n) = \beta(n,m)$
- NA	TO ME CIMEN B
1	$\beta(m,n) = Im In $
A IT	m+n (m) (m)
	A STATE OF THE STA

PAGE NO.: DATE: / /

Jamma Formula

$$\frac{1}{2} \int_{0}^{\frac{1}{2}} \sin^{m}\theta \cos^{m}\theta d\theta = \frac{m+1}{2} \int_{0}^{\frac{1}{2}} \frac{n+1}{2}$$

$$\circ 2 \int_{0}^{\pi/2} \sin^{m}\theta \cos^{m}\theta = \beta(m+1, n+1)$$

Euleri Functional Equation Euleri Functional Equation In II-n = Tt 0<11

san ntc

$$\beta(m,n) = \overline{m} \overline{n}$$
 $\overline{m+n}$

RHS:-
$$\beta(m+1,n) + \beta(m,n+1)$$

Since
$$n+1 = n \cdot n$$

$$= m \overline{m} \overline{n} + n \overline{m} \overline{n}$$

$$(m+n) \overline{m+n}$$

$$(m+n)$$
 $[m]$ $[n]$

$$= \frac{(m+n) \operatorname{Im} \operatorname{In}}{(m+n) \operatorname{Im} + n}$$

$$= \beta(m,n)$$

Legendre's Duplication Formula
The formula for Garage functions.
Duplication Formula for Gamma Functions.
Matement: Let men then
Statement: Let $m \in \mathbb{N}$ then $[m] [mt] = \sqrt{\pi} [2m]$ 2^{2m-1}
Proof: we know that $p(m \circ n) = \int_0^{\pi V_2} \sin^2 m \cdot \sigma \cos^{2n-1} \sigma d\sigma$
$b(m \circ n) = \int_0^\infty \sin^2 n \cdot v \cos^2 n \cdot$
$= \underline{\text{Im} \text{In}}$ $2 \underline{\text{Im+n}}$
2 m+n
Put 2n-1 = 0 in (1), we have
$\int_{0}^{1/2} \sin^{2m-1} 0 d0 = \int_{0}^{1/2} \int_{0}^{1/2$
fut $2n-1=0$ in 0 , we have $\int_{0}^{11/2} \sin^{2m-1} 0 d0 = \underline{\text{Im}} \underline{\text{Iv}}_{2} \underline{\text{Im}}_{4} \underline{\text{V}}_{2}$
Again put $n=m$ in \mathfrak{D} , we have $\int_0^{\pi 1/2} (\sin 0 \cos 0)^{2m-1} = (\overline{1m})^2 \qquad (3)$
$\int_{0}^{\pi/2} (\sin 0 \cos 0)^{2m-1} = (\pi n)^{2} $ (3)
Now multiply and divide eq. (3) by 2^{2m-1} $\frac{1}{2^{2m-1}} \int_{0}^{11/2} (2 \sin 0 \cos 0)^{2m-1} = \frac{(m)^{2}}{2 [2m]}$
$\frac{1}{10000000000000000000000000000000000$
2 2m
$\frac{1}{2^{2m-1}} \int_{0}^{1/2} (\sin 20)^{9m-1} = (\sqrt{m})^{2}$
2 [2m]
Put $20 = \psi$ $0.0 \rightarrow 0 \Rightarrow \psi \rightarrow 0$
$d\theta = d\psi/2 \qquad \qquad 0 \rightarrow \psi \rightarrow 0$ $0 \rightarrow \pi/2 \qquad \Rightarrow \psi \rightarrow \tau$
The state of the s
$\frac{1}{2^{2m-1}} \left(\frac{\pi}{\sin \psi} \right)^{2m-1} d\psi = (1m)^{2}$
9 13
if f(a-x) = f(x)
then 1 1(x) din = 10/2
Jo (x) dx
$\int_{0}^{H} \sin^{2m-1} \psi d\psi = 2 \int_{0}^{\pi/2} \sin^{2m-1} \psi d\psi$
an y du

PAGE NO .: DATE: / / $\frac{1}{2^{2m-1}}$ $\frac{1}{2}$ $\frac{1}{2}$ Form D 2. 1 11/2 sin2m-1 0 do = ([m)2 2 [2m Kum (2) m 11 = ([m)2 2 m+1 212m 22m-1 $m m + 1 = \sqrt{\pi} \sqrt{2m}$ 92M-1 Ho Po Note $\int_0^\infty e^{-ax} \sin bx x^{n-1} dx =$ $\frac{\int n}{\left(a^2+b^2\right)^{\eta/2}} \sin n\theta$ 100 e-ax corbx or n-1 dx = (a2+ b2) M)2 where $0 = tan^{-1}(b/a)$ $\int_{0}^{\infty} x^{n-1} e^{-\alpha x} dx = \frac{\ln x}{a^{n}}$ He know Replace a by z $x^{n-1} e^{-ZX} dx = In$ = e-(a-1b) x 2n-1 dx = tn $= \overline{n} = \overline{n} (a+ib)^n$ $(a-ib)^n (a^2+b^2)^n$ let $a = \gamma$ (010 $b = \gamma \sin \theta$ $\gamma = \sqrt{a^2 + b^2}$ $\theta = \tan^{-1}(b/\alpha)$ e-ax eibx xn-1 dx = In lose Books (South + Tourne) (1 100 0+ ir sino)

PAGE NO. : DATE: o-late -a-ibx) xn+ dx = (02+b2)m (x cos 0 + ix sim 0)m In (coso + i amo)" e-ax etibx xn-rax [n (a2+b2) N2 (cal 0+ising) n (a2+b2) n $e^{-\alpha x}$ (cosbx+isimbx) $x^{n-1} dx = In (coso + idin 0) = (\alpha^2 + b^2)^{n/2}$ e^{-qx} (cos bx + i cin bx) $x^{n-1} dx = [n (cos no + i sin no)] (a^2 + b^2)^{N_2}$ compasse seed and imaginary pard sin bx xn-1 dx = In sin no (Q2+b2) N2 e-ax for px xn-1 dx = In corno (a2+b2) 1/2 toeer. Put a = 0 so that $0 = \pi/2$ X N-1 sin bx by in him x n-1 cos bx = In cos form # Imp. Result xn-1 sin be = In co och-1 colbx = In COS mul COJ bx yn 0x IFM ten n'u Temula On the Currenine Peroduct of Gamma For any nEM and ny N. 1 2 2 = (271) 12

For any n element of N $(n \in N)$ $\begin{bmatrix} 1 \\ n \end{bmatrix} \begin{bmatrix} 2 \\ n \end{bmatrix} \begin{bmatrix} 3 \\ n \end{bmatrix} \cdots \begin{bmatrix} (n-1) \\ n \end{bmatrix} = \frac{1}{2}$ Thin : the following by Evaluate We 1-N = Sin nTC $= \sqrt{\pi}$ MY ROUGH NOTE BOOK

-1	VIT	=	H
1 2	2		
			-8

$$\frac{1}{2} = \sqrt[2]{\pi}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\begin{bmatrix}
-\frac{5}{2} & \left(\frac{5}{2} \times \frac{3}{2} \sqrt{\Pi}\right) &= \Pi \\
-\sin \Pi_{/2} &= -4\sqrt{\Pi}
\end{bmatrix}$$

$$\frac{1}{2} = \frac{1}{2}$$

$$-\frac{\pi}{-\sin\left(3\pi+\frac{\pi}{2}\right)}$$

 $\int_{0}^{\infty} \frac{x^{2}(1-x^{6})}{(1+x)^{2+}} dx = 0$

 $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx =$

 $\beta(m,n) = \int_{0}^{\infty} x^{\frac{1}{2}} \frac{(1-x^{\frac{1}{2}})}{dx} dx$ $= \int_{0}^{\infty} x^{\frac{1}{2}} \frac{(1-x^{\frac{1}{2}})}{dx} - \int_{0}^{\infty} x^{\frac{1}{2}} \frac{dx}{(1+x)^{2}} dx$ $= \int_{0}^{\infty} x^{\frac{1}{2}} \frac{(1-x^{\frac{1}{2}})}{dx} - \int_{0}^{\infty} x^{\frac{1}{2}} \frac{dx}{(1+x)^{15}+9} dx$ $= \int_{0}^{\infty} x^{\frac{1}{2}} \frac{(1-x^{\frac{1}{2}})}{(1+x)^{15}+9} dx$ $= \int_{0}^{\infty} x^{\frac{1}{2}} \frac{(1-x^{\frac{1}{2}})}{(1+x)^{15}+9} dx$ $= \int_{0}^{\infty} (1+x)^{\frac{1}{2}} \frac{dx}{(1+x)^{15}+9} dx$

= (H3 . since p(m,n) = p(n,m)

Show that $\int_{1}^{1/2} \tan^{n} x \, dx = \frac{11}{2} \ln \left(\frac{n\pi}{2} \right)$

We know that $\int_{-\infty}^{\pi/2} 6in^m x \cos^m x dx = \int_{-\infty}^{\infty} \beta\left(\frac{m+1}{2}, \frac{n+1}{2}\right) - \theta$

and $\beta(m,n) = \overline{m} \overline{n}$ $\overline{m} n$

By (1)

$$\begin{array}{c|cccc}
1 & \frac{n+1}{2} & -\frac{n+1}{2} \\
2 & \frac{n+1-n+1}{2}
\end{array}$$

$$\frac{1-n+1}{2}=\frac{2-n-1}{2}$$

$$=\frac{1-h}{2}$$

$$= \frac{1}{2} \frac{\pi}{\sin \left(\frac{n+1}{2}\right)\pi}$$

2

$$= \frac{\pi}{2} \frac{\sec(n\pi)}{2}$$

doc =

$$\beta(m,n) =$$

$$1-x^n = y$$

$$\Rightarrow$$
 $x = (-y)^{y}$

$$dx = -\frac{1}{n} \frac{dy}{(1-y)^{2}n} n^{-1}$$

LHS.

$$= \frac{1}{n} \int_{0}^{1} \frac{(1-y)^{2}n^{-1}}{(1-y)^{2}n^{-1}} \frac{dy}{dy}$$

$$= \frac{1}{n} \int_{0}^{1} \frac{(1-y)^{2}n^{-1}}{(1-y)^{2}n^{-1}} \frac{dy}{dy}$$

$$= \frac{1}{n} \int_{0}^{1} \frac{y^{2}z^{-1}}{(1-y)^{2}n^{-1}} \frac{dy}{dy}$$

$$= \frac{1}{n} \int_{0}^{1} \frac{y^{2}z^{-1}}{(1-y)^{2}n^{-1}} \frac{dy}{dy}$$

$$= \frac{1}{n} \beta \left(\frac{1}{2}, \frac{1}{n} \right)$$

$$= \frac{1}{n} \frac{\frac{1}{2} \frac{1}{y_n}}{\frac{1}{2} + \frac{1}{n}}$$

$$\frac{1}{n} \frac{\sqrt{n}}{\sqrt{n}}$$

= RHIS.

Prove that
$$I = \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\alpha} \cos^{4}\theta + b \sin^{4}\theta} = \left(\frac{1/4}{4}\right)^{2}$$

the Put tan $\theta - t$

Put tan D - t

peut bt =
$$ay \rightarrow 4bt^3 dt = a dy$$

of $dt = a$
 $dt \rightarrow 0 \rightarrow y = 0$
 $dt \rightarrow 0 \rightarrow y = 0$
 $dt \rightarrow 0 \rightarrow y = 0$

100
LHS: $\int_{0}^{\infty} \frac{a}{4b} \left(\frac{ay}{b}\right)^{3/4} \sqrt{a} \left(\frac{1+y}{2}\right)^{3/2} dy$
(1) 14 Va (179) 1/2
$= \frac{a^{1/2} a^{-3/4}}{4 b^{(4-3)}} \begin{cases} y^{3/4} & (1+y)^{1/2} \\ y^{3/4} & (1+y)^{1/2} \end{cases}$
4 6 4) 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$= \frac{a^{-1/4} b^{-1/4}}{4} \int_{0}^{\infty} \frac{y^{-3/4}}{(1+y)^{1/4}} dy$
4)0 (1+y)/4
$= \frac{4}{4(ab)^{1/4}} \int_{0}^{\infty} \frac{y^{1/4-1}}{(1+y)^{1/4}} dy$
4 (ab) 74) a (1+y) 24 24
$\frac{1}{4 (ab)^{1/4}} \beta \left(\frac{1}{4}, \frac{1}{4}\right)$
$\beta(m,n) = \int_0^\infty y^{m-1} dy$
Also $p(m,n) = \sqrt{m \ln n}$
m+n
= 1 [] 1 [] 4
4 (ab) 14 [Vu+ Vu.
$=$ $((yy)^{-})$
4 (ab) 14 1/2
15-12
= $(()y)$
4 (ab) 1/4 ITT
= RHS.
Q
$e_{x} \rightarrow T.p.$ $\int_{0}^{\infty} \sin(x^{2}) dx = \int T \sqrt{2}$
we know) or sin tox dx = [m sin /mTL)
m (a)
LHS (8) Sin (x2) dx
Put $x^2 = t$ $\Rightarrow 2x dx = dt \Rightarrow dx = \frac{dt}{2n}$

dx = Ut
L/F
0 × +0 0 + +00
0 4 7 0 0 4 7 0
$= \int_0^\infty \int_{-\infty}^\infty \sin t dt$
1 1 1
$= \int_{2}^{\infty} t^{\frac{1}{2}-1} \sin t dt$
Since $\frac{1}{2}$
$\frac{14S}{2} = \frac{1}{1} \times \frac{17}{2} = \frac{1}{1} \times \frac{17}{$
= ,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2 V2
= 1 M. 2 V2
= RHS.
Cu TD P 1 P
Gr. Tip. β $(p,q) = a^p b^q \int_0^a x^{p-1} dx$
(ax+b) 1+4
Hence deduce that
ab a ros
13 (9 sin+0 + b cox=0) P+2
$\frac{1}{1} = \frac{1}{1} = \frac{1}$
This are by $\Rightarrow x = by$ $\frac{1}{a}x = \frac{1}{a}$
1 1 1 0 0 1 1 1 0 0 1 V 1 0 0 0 0 0 0 0
$(45) = a^{p}b^{q} $ $(a^{p})^{p-1}$ $(by+b)^{p+q} $ a
= 0 Ph 1 10 16 1P-1 11 P-1
MY ROUGH NOTE BOOK Q 0 (1-14) P+9 (1-14) P+9

H.b.

ap-1-p+1 b9+1+p-1-p-	y p-1
[\infty P-1	b P+ 9 (1+4) P+9
y ,	1 p+q dy = p(p,q) - LHS.

(a tan 20 + b) p+ q 2 tan 0 20 20 do

$$p(p,q) = a^p b^q \int_0^\infty \frac{\chi^{p-1}}{(\chi + b)} e^{+q} d\chi - 0$$

= dx = 2 tano sec20 do

 $= 0 \quad 0 = 0 \quad x = \infty \quad 0 = 1/2$ $= \frac{a^{p} b^{q}}{a^{p} b^{q}} \quad \frac{11/2}{(a \tan^{2}\theta + b)} \quad \frac{(\tan^{2}\theta + b)}{(a \tan^{2}\theta + b)} \quad \frac{p+q}{p+q}$ $= \frac{b^{q} b^{q}}{a \sin^{2}\theta + b \cos^{2}\theta} \quad \frac{(\cos^{2}\theta)^{p+q}}{(a \sin^{2}\theta + b \cos^{2}\theta)^{p+q}} \quad \cos^{2}\theta \quad \cos^{2}\theta$

 $\beta(p,q) = \alpha^p b^q \int_{0}^{W_2} \frac{\sin^2 p^{-1} \theta \cos^2 \theta}{\theta + b \cos^2 \theta} \int_{0}^{p+q} d\theta$

do H.P.

Rectification

The method of finding the length 6/w 2 points on any plane curve is called Rectification.

Lengths of Curves:	y = f(x)
Let y = f(x) be any	Q (X+AZ, y+sy)
curve and of as a	
fixed point on the	
curry Let 2 nearest	Jay 1 Ay
point on curre P(x,y)	5 CHILL N
6 g (2+1x, y+1y)	P (x,y)
which has curve length	
from s and stas	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
respectively.	L M
or fre length pg	= BS

Now dean perpendicular from P& g as PL & GM : du to figure

Pf is the chord of the curve Now, in APAN

$$\Rightarrow \frac{(PQ)^{2}}{(PQ)^{2}} = \frac{(PN)^{2}}{(N)^{2}} + \frac{(N)^{2}}{(N)^{2}} = \frac{1}{(N)^{2}} + \frac{(N)^{2}}{(N)^{2}} = \frac{(N)^{$$

$$\frac{1}{2} \left(\begin{array}{ccc} PQ & \text{our } PQ \end{array} \right)^2 = 1 + \left(\begin{array}{ccc} PQ \\ OU \end{array} \right)^2$$

$$\frac{1}{2} \left(\frac{pQ}{\omega u \cdot 19} \right)^{2} \left(\frac{AS}{\Delta u} \right)^{2} = 1 + \frac{4Q}{\Delta u} \left(\frac{Ay}{\Delta u} \right)^{2}$$

vas Q -> P Jx , sy ->0

 $\lim_{g \to p} \frac{pg}{\text{arc } pg} = 1$

taking limit on both sides

as
$$Q \rightarrow P$$

$$\frac{(ds)^2}{dx} = 1 + \frac{(dy)^2}{dx}$$

: Ilm By = dy

 $\frac{ds}{dx} = \pm \left[1 + \left(\frac{dy}{dx} \right)^2 \right]$

Let so s increases when x increases $\frac{ds}{dx} = \sqrt{\frac{1+\left(\frac{dy}{dx}\right)^2}{\left(\frac{dx}{dx}\right)^2}}$

On integrating from lim a to b

arc It (dy)2 dx

Expression for Arc Length

1. Cartesian Form: - If the curve eq. is y = f(x) then curve length b/w 2 points. which lie on curve i.e. a < x < b is

$$S = \int_{0}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Corr. If we've eq. is x = f(y) and $c \le y \le d$ then $s = \int_{c}^{d} \int 1 + \left(\frac{dx}{dy}\right)^{2} dy \qquad (b)$

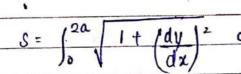
3. Polar form If the curve eq. be r = f(0) and $0 \le 0 \le 0$. Then

$$S = \int_{0}^{0} \sqrt{3^2 + \left(\frac{dx}{d0}\right)^2} \ d\theta \qquad \qquad d$$

Cover. If the curve eq. in polar form be O = f(x) and $T_1 \leq x \leq x_2$ then

Note to memorise above formulae

1.
$$(as)^2 = (ax)^2 + (ay)^2$$
 for carterian divide by $(ay)^2$ for a divide by $(ay)^2$ for b


	0 3
it formed	
The state of the s	
And the last of th	
and the same of th	7

4. Pedal Equation Form p=f(x)

If the curve eq. p = f(x) and two points on curve are radius vector x, and x_2 respectively, then

$$S = \int_{x_1}^{x_2} \frac{y \, dx}{\sqrt{x^2 - p^2}}$$

Ex- Prove that the length of the arc of the parabola oc= 4ay

 $\frac{x^2 - 4ay}{2x} = \frac{4a}{4a} \frac{dy}{dx}$

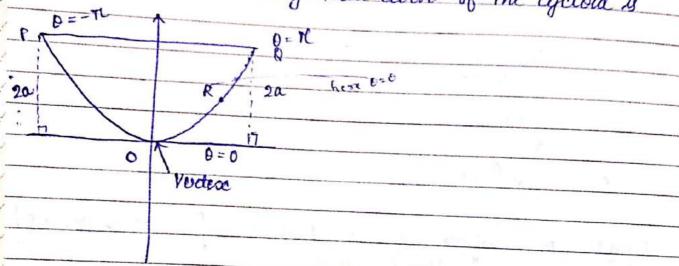
 $\frac{dy = x}{dx}$

 $S = \int_0^{2q} \left(1 + \left(\frac{x}{2q} \right)^2 dx \right)$

 $x^{2} = 4qy$ $p_{uv} y = a$ $x^{2} = 4q^{2}$

Hince $\sqrt{\chi^2 + a^2} dx = \frac{\chi}{2} \sqrt{\chi^2 + a^2} + \frac{\tan \alpha^2 \log(\chi + \sqrt{\chi^2 + a^2})}{2} + \frac{\rho}{2}$

(0,0)


$$S = \frac{1}{20} \int_{0}^{20} \sqrt{(2a)^{2} + \chi^{2}} dx$$

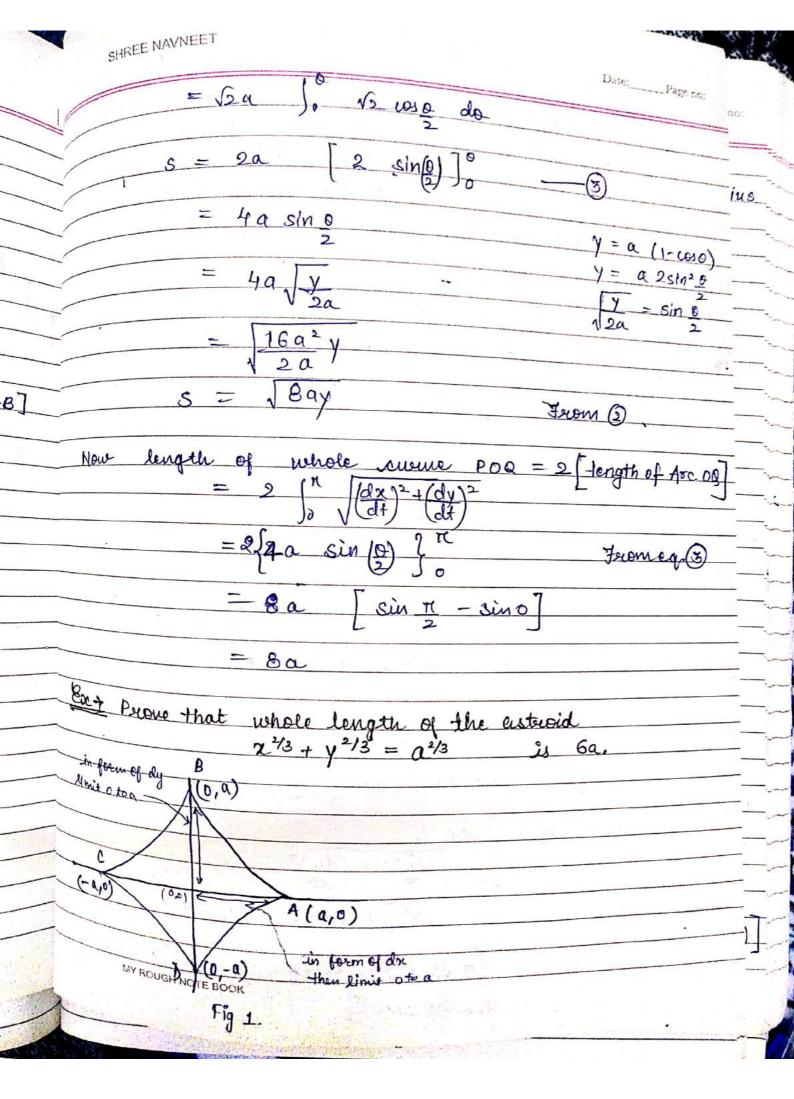
 $= \frac{1}{2a} \left[\frac{3c}{2} \sqrt{x^2 + 4a^2} + \frac{4a^2}{2} \log x + \sqrt{x^2 + 4a^2} \right]^{2a}$

 $= \frac{1}{2a} \left[\frac{(2a)\sqrt{2} + 2a^2 \log (2a + 2a\sqrt{2})}{2a} - \frac{2a^2 \log 2a}{2a} \right]$

 $= \frac{1}{10} \left[2a^{2} \sqrt{2} + 2a^{2} \log (1 + \sqrt{2}) \right] = 0 \left[\sqrt{2} + \log (1 + \sqrt{2}) \right]$

Show that the length of the over from the Nevder to any pt. on the cycloid $x = a(0 + 8 \ln 0) - 0$ $y = a(1 - \cos 0) - 0$ is $\sqrt{8}$ is a show that whole length of an arce of the curine is 8a. Eg Curive Tracing, the curive of the cycloid is D=-TL

In given fig. O(0,0) is werten and let R be any point on


and given rune

$$y = a(0 + \sin \theta) - 0 \Rightarrow dx/dt = a(1 + \cos \theta)$$

 $y = a(1 - \cos \theta) - 0 \Rightarrow dy/dt = a \sin \theta$

e length of ava

$$S = \begin{cases} 0 & \left(\frac{dx}{d\theta}\right)^{\frac{1}{2}} + \left(\frac{dy}{d\theta}\right)^{\frac{2}{2}} \\ 0 & \left(\frac{dx}{d\theta}\right)^{\frac{1}{2}} + \left(\frac{dy}{d\theta}\right)^{\frac{2}{2}} \end{cases}$$

H NOTE BOOK

oc 43 + y 2/3 = a 2/3

ow, differentialing cortx

2 x-13 + 2 y-13 dv =0

Now,

$$\frac{1}{3}x^{-1/3} + \frac{2}{3}y^{-1/3} \frac{dy}{dx} = 0$$

$$\frac{-\alpha^{-1/3}}{y^{-1/3}} = \frac{dy}{dx}$$

$$\frac{1}{dx} = -\left(\frac{y}{x}\right)^{1/3}$$

length = 4 [length of curve : AB] Therefore whole cume

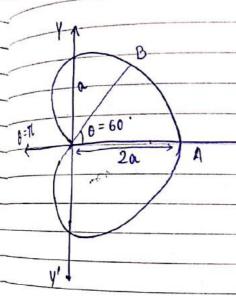
$$= 4 \int_{0}^{a} \sqrt{1 + (y)^{2}/3} dx$$

$$= 4 \int_{0}^{\infty} \sqrt{x^{2/3} + y^{2/3}} dx$$

$$= 4 \int_0^{\alpha} \sqrt{\alpha^2/3} dx$$

$$= \frac{4 \times 3 \times 2/3}{2} \alpha^{1/3}$$

$$= 6 \alpha^{2/3} \alpha^{1/3}$$


Aroun that the upper half are of the cardioid of a lite cord) of the cardioid of the cardioid is my ROUGH NOTE BOOK by the line 0 = 71/3

Prove that the length of the our of the semi-cubical parabola ay = x3 from its vectex to the pt parabola ay = x3 from its verdex to the pt (a,q) is us

Home work. Solutions

find the perimeter of the cardioid r = a (1+1000) -

0=0

By cume Tracing, trace the course

Curve is symmetrical about Initial line

Differentiating wat o

 $\frac{dr}{d\theta} = -a \sin \theta$

: length of upper half.

= $\int_0^{\pi} \sqrt{(a(1+\cos\theta))^2 + (-a\sin\theta)^2} d\theta$

 $= \alpha \int_0^H \sqrt{2(1+\cos\theta)} d\theta = 2\alpha \int_0^H \cos\theta d\theta$

= 2a [2 sin 0] 1 = 4a -

do, reg perimeter = 2 x 4a = 8a

Her finding length of are from A (0=0) to B(0=60°) in when half, replace limits 11 by 11/3

SHREE NAVNEET

SHREE NAVNEET

$$AB = 40 \left[A \sin \theta \right]^{\frac{1}{3}} = 40 \text{ an } \frac{1}{6}$$

$$AB = 40 \left[A \sin \theta \right]^{\frac{1}{3}} = 40 \text{ an } \frac{1}{6}$$

$$AB = 40 \left[A \sin \theta \right]^{\frac{1}{3}} = 40 \text{ an } \frac{1}{6}$$

$$AB = 40 \left[A \sin \theta \right]^{\frac{1}{3}} = 40 \text{ an } \frac{1}{6}$$

$$AB = 40 \left[A \sin \theta \right]^{\frac{1}{3}} = 40 \text{ an } \frac{1}{6}$$

$$\frac{(dx)^{2} = 9 \cdot x^{4} = 9x^{4}}{(dx)^{2} + 4a^{2}} = \frac{9x^{4}}{4a^{2}} = \frac{9x}{4a^{2}} = \frac{$$

Req. length
$$= \int_{0}^{q} \sqrt{\frac{1+9x}{4a}} dx = \frac{1}{2\sqrt{a}} \int_{0}^{q} \sqrt{\frac{4a+9x}{4a}} dx$$

$$= \frac{1}{2\sqrt{a}} \left[\frac{(4a+9x)^{3/2}}{9} \cdot \frac{2}{3} \right]_{0}^{a}$$

$$= \int_{27}^{6} \left\{ 13\sqrt{13-8} \right\} a$$

Intrinsic Equation of a curve

Intrinsic Equation of a curve

Relation between s and \$\psi\$ is called Intrinsic eq. where s is

Relation between s and \$\psi\$ is called Intrinsic eq. where s is

the axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

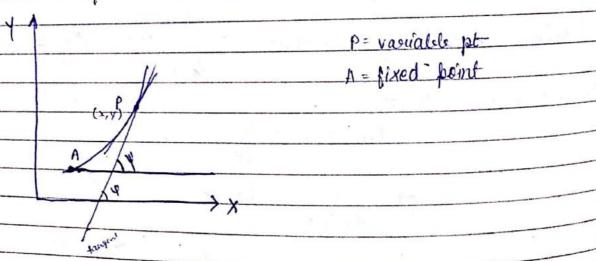
The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.


The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from fixed point \$A\$ to variable point \$P\$.

The axe length from \$P\$ to the angle \$P\$ to the axe length \$P\$ to the axe le

Intrinsic Eq. from the Cartesian Equation

Let curve eq. y = f(x) y = f(x) y = f'(x)

when we know that $S = \begin{cases} x & |x| = 0, \\ dx & dx \end{cases}$

15...

summate & from @ and @ then the obtained relation

Inteinsic Equation From the Polar Equation

\$ = angle b/w radial vector and tangent at P. Let I be the roadial vector angle

. We know that ψ = 0+ φ - O

let a come eq. is = f(0)

Also we know that

 $tan \phi = r \frac{d\theta}{dr}$

 $\Rightarrow x = tan \phi$ $d = tan \phi$

Now ellmenate 0, p from 1, 3 and 9 we strain required intrinsic eq.

Parametric form [Intrinsic Eq. from the parametric Esq.] y=9(t) - 0 let cume eq. in parameteric form x & f(t) we know that tan # = dr dx/dt

MY ROUGH NOTE BOOK

0 80

> tan 4 = 81(t)

3 = It (dx)2 + (dy)2 dt 5=). \[\langle \lang (3) Now ellminate t from @ and 3 then the resultant eq is intrânsic equation Example Find the intrinsic eq. of the cardicid at $r = a (1 - \cos a)$ bytween www eq. r = a (1-coso) -0 : we know that 4 = 0 + 0 - 0 From O dr = a sin o and tand = r de = de (1-1010) - 3 \$150 we know that s = \(\sigma \) \(\sigma^2 + \left(\d \sigma \right)^2 \) do $= \int_0^0 \sqrt{a^2 \left(1+\cos^2\theta - 2\cos\theta\right) + a^2\sin^2\theta} dt$ = a V2 50 V1-coso do = a \sis \sin \operatorname{0} = 40 [-1000]0 3 = 4a [1 - cos o] = -4a [cos 2] MY ROUGH NOTE BOOK

who we know that

$$S = 8a \sin^2 0 - C$$

From eq. 6, 6, 6 eliminate 0, \$

$$\phi = \frac{0}{2}$$

$$\Rightarrow \psi = 30$$
 — 5

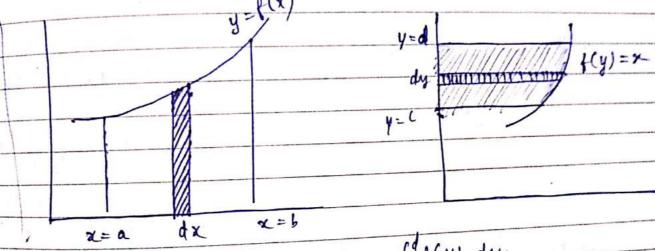
From
$$\hat{y}$$
 $\Rightarrow e = 2\psi$

$$S = 8a \sin^2 \left(\frac{\psi}{6} \right) = 4a \left(1 - \omega_1 \frac{\psi}{2} \right)$$

which is internste of the given curre

Q. T.P the intrinsic eq. of the curve. conternacy
$$y = C \cosh(x) \text{ is } x = C + \tan \varphi$$

$$P(xy)$$


 $y = \cosh(x)$ $\Rightarrow \tan y = dy = \sinh(x) - 0$ $S = \int_{0}^{x} (1 + \sinh^{2}(x)) dx = \int_{0}^{x} (1 + \cosh^{2}(x)) dx$ $= \int_{0}^{x} \cosh(x) dx = c \sinh(x)$ $\Rightarrow \cosh(x) dx = c \sinh(x)$ $\Rightarrow \cosh(x) dx = \cosh(x)$ $\Rightarrow \cosh(x) dx = \sinh(x)$ $\Rightarrow \cosh(x) dx = \sinh(x)$ $\Rightarrow \cosh(x) dx = \sinh(x)$ $\Rightarrow \cosh(x) dx = \cosh(x)$ $\Rightarrow \cosh(x) dx =$

a: S	SHREE NAVNEET Date:P	300 00
	O Prome that the intrincia car of the	
	p= r sin a	
	is = a e vota unas a in a lin	
	is = a e that a where a is arbitrary constant,	
-0	p= r sin x - 0	
	dp = sin x	
et to	dr	
(3)	We know that over length	
igth	$S = \int_0^{\infty} \frac{\delta d\delta}{\sqrt{r^2 p^2}}$	
	= 12 292	
i data da	$= \int_{0}^{\infty} \delta ds$ $= \int_{0}^{\infty} \delta ds$	-
1.4	= * sec & dx P	
DECEMBER 18 AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IN COLUMN	Jo	
-	= sud (8-0)	
	\Rightarrow 5 = \times set d \sim (2)	
	Again, : We know that	
y	$\int \frac{ds}{dy} = \frac{ds}{dp} = \frac{\pi}{\sin \alpha}$	3)
D		
	$d\sigma = \int = \cos \alpha$	
g 2a		
	$\frac{do}{dy} \frac{ds}{dp} = s \frac{dr}{dp} = s dr$	
+ 4 a 2 cot 2 p		
	$\frac{ds}{dy} = \frac{s}{sec\alpha} = \frac{s}{scot} \propto$	
Y .	$ds = \cot x dy$	
-	S COL MY	
	=> log s = w cot x + 109 a	
	$\frac{\Rightarrow}{\Rightarrow} \log s = \psi \cot x + \phi \log a$ $\frac{\Rightarrow}{\Rightarrow} \frac{s}{\Rightarrow} = e^{\psi \cot x}$	
	ā	
1	MY ROUGH NOTE BOOK, $S = ae^{\psi coto}$ H.P.	
	which is Internsic eq of the stren come	

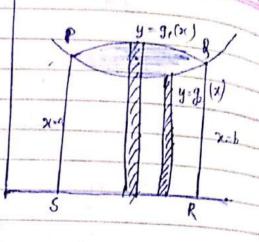
fundrature is a method to find the acrea of region which is

the area bounded by cure y = f(x)

the axis x and the exordinates x = a and x = b &

Area Sof(y) dy

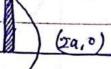
If were eq is in parametric form then $4 \text{ sea} = \int_{a}^{b} y \, dx$ $= \int_{t_{1}}^{t_{2}} y \, dx \, dt$ $= \int_{t_{1}}^{t_{2}} x \, dy \, dt$


Asea bounded by 2 contesian curves

Area bounded by the comer

= $\int_a^b g_1(x) dx - \int_a^b g_2(x) dx$

$$= \int_{\alpha}^{b} g_{n}(x) - g_{n}(x) dx$$


$$= \int_{a}^{b} g_{1}(x) - g_{2}(x) dx$$

Prone that the onea bounded by the eneme

REP DELDE

X=0

Form (1) $y = \pm \int_{x}^{2a} 2a \sqrt{2a-x}$

$$= 2.20$$
 $20-x$ $1x$

Put
$$x = 2a \sin^2 \theta$$

MY ROUGH NOTE BOOK

SHREE NAVNEET

SHREE NAVNEET

$$= 40^{11/2} \quad \sqrt{20} \quad \cos 0 \quad 4a \quad \sin 0 \cos \theta \quad d\theta$$

$$= 40^{11/2} \quad \sqrt{20} \quad \sin \theta \quad d\theta$$

$$= 160^{2} \quad \sqrt{11/2} \quad \cos^{2}\theta \quad d\theta$$

$$= 160^{2} \quad \sqrt{11/2} \quad \cos^{2}\theta \quad d\theta$$

$$= 1602 | \sqrt{1/2} \cos^2 \theta d\theta$$

$$= \frac{1600}{0}$$

$$\frac{111/2}{2} \sin^{m} 0 \cos^{m} 0 d0 = \frac{1}{2} \frac{B(\frac{m+1}{2}, \frac{n+1}{2})}{2}$$

$$= 16a^{2} \beta\left(\frac{1}{2}, \frac{3}{2}\right)$$

$$=\frac{16a^2}{2} \frac{\frac{1}{2}}{2} \frac{3/2}{2}$$

$$= \frac{8\alpha^2 \pi}{2}$$

$$A = 4x \int_0^a y \, dx$$

$$A = 4x \int_{A}^{a} y \, dx$$

Put
$$x = \cos 3 +$$

Put
$$x = cos^3 t$$
 $dx = -3cos^2 t sint$
 $\rightarrow 0$ $t \rightarrow T/2$ dt

$$A = 4x \int_{11/2}^{1} a^2(\sin^3 t) \left(-3\cos^2 t \sin t\right) dt$$

$$A = 4x \int_{11/2}^{9} a^{2}(\sin^{3}t) \left(-3\cos^{2}t \sin t\right) dt$$

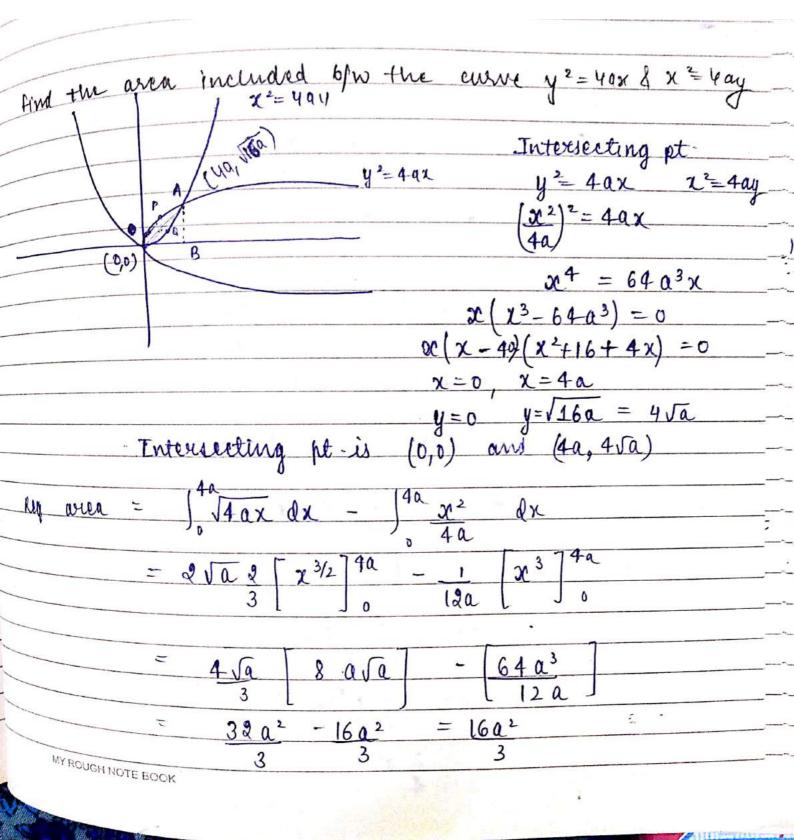
$$= 12 \int_{0}^{11/2} \sin^{4}t \cos^{2}t dt = 12 a^{2} \beta \left(\frac{5}{2}, \frac{3}{2}\right)$$

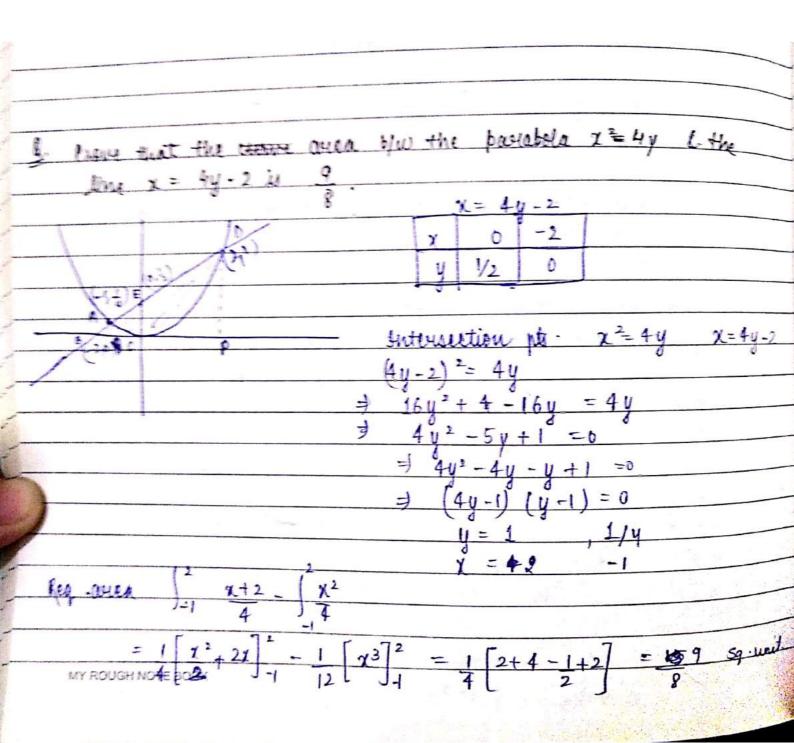
$$= 12 a^{2} 5/2 3/2$$

$$= 12a^{2} \frac{5/2}{3/2} = \frac{3}{8} \pi a^{2}$$

(- NID)

DATE: 7 T
Exc. 7 Find the area common to the following Tangents
$y^2 = 0 \infty \qquad \qquad x^2 + y^2 = yax$
$-\frac{y^2 = ax}{x^2 - 4ax + (2a)^2 + (2a)^2 + y^2 = 0}$
$(x - 2a)^2 + y^2 = (2a)^2$
$(x-2a)^2 + y^2 = 4a^2$
Symmetry: $:= f(x, -y) = f(x, y)$ and $g(x, -y) = g(x, y)$
- : Cuewe is symmetric about X axis.
Curve does not passes through origin.
dsymptotes: for g(x,y)
oblique asymptotes $y = m x = 1$
$\phi_3(m) = m^2 + 1$ $m = \pm 2$
asymptote does not exist
for f(x,y), oblique asymptote
$\phi_2(m) = m^2$
$\phi_1(m) = -a$
$e = -\frac{\phi_1(m)}{\phi_2(m)} = \frac{a}{2m}$
øż(m) 2 m
for $m=0$ $C \rightarrow \infty$
60 y → ∞
L- so asymptote does n't exist.
- Intersection pti: for f(x, y) when y=a + x=0
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
= X=0, 4a
$y^2 = \alpha x \qquad x^2 + y^2 = 4\alpha x$
$\mathfrak{R}^2 = \mathfrak{F} \mathfrak{a} \mathfrak{A}$
$\alpha(x-3a)=0$
$\chi=0$, $\chi=3a$
$\Rightarrow y=0 x=\pm \sqrt{3} a$


y = ± Vax 30, 130 42=4ax MI Reg. avea = 2x avea of OPCM dx.


+ &x avea PM'AM

3a (40,0) (2a,0) (0,0) Now area of PPCM = 130 Jax dz P' - av3) = 1a | 3a x 12 dx $I_1 = \sqrt{a} 2 \left[x^{3/2} \right]_0^{3a} = 2\sqrt{3}a^2$ $PMAM = \int_{3\alpha}^{4\alpha} \sqrt{(4\alpha - 3c)3c} dx$ $T_{x} = \int_{-4\alpha}^{4\alpha} \sqrt{4\alpha^{2} - (x-2\alpha)^{2}} dx$ Area of $T = \left[\frac{1}{2} \left(x - 2a \right) \sqrt{4a^2 - (x - 2a)^2} + \frac{4a^2}{2} \sin^{-1} \left(x - 2a \right) \right] \frac{4a}{3a}$ = $3a^2 \sin^2 1 - (a^2 \sqrt{3} + 2a^2 \sin^2 1)$ $\frac{1}{2} = 2a^2\pi - a^2\sqrt{3} + 2a^2\pi$

Reg also = 2 $2\sqrt{3}\alpha^2 + \alpha^2\pi + \pi\alpha^2 - \alpha^2\sqrt{3}$ = $2\left(\frac{9\pi\alpha^2 + 3\sqrt{3}\alpha^2}{3}\right)$ = $\alpha^2\left(\frac{4\pi + 9\sqrt{3}}{3}\right)$. Any.

8	Find the area bounded by the curves $y^2(a-\pi) = x^3$ and its asymptotes.
,	and it
/	Find the area bounded by the curves $y^2(a-x) = x^3$ and its asymptotes. $(y^2(a-x) = x^3)$ $(y^2(a-x) = x^3)$ $x=a$ $x=a$ $y = a$ $x=a$ $y = a$ $x=a$ $y = a$ $x=a$ $y = a$
	$\alpha y^2 - \alpha - x = 0$
	x=a have the
	provided asymptoty
	parallel to y ani
	010.
(0,0)	Required area = 2 / a y dx
(1)	
	$= 2 \left(\frac{\alpha}{x^3} \right) \frac{dx}{dx}$
	J84Q-X
	let x = a sin 20
	$a-x = a \cos^2 \theta$
	Also dx = 2 a sin 0 cos o de
	Y -> a Box 7U2
	Required over = $2 \int_{0}^{\pi/2} \sqrt{a^{3} \sin^{6}\theta} \frac{2a \sin\theta \cos\theta da}{\sqrt{a} \cos\theta}$ $= 4a^{2} \int_{0}^{\pi/2} \frac{\sin^{3}\theta}{\cos\theta} \sin\theta \cos\theta d\theta$ $= 4a^{2} \int_{0}^{\pi/2} \frac{\pi}{\cos\theta} \cos\theta d\theta$
	0 1010
	= 10 ² 1 ⁴ / ₂ sin 30 vis 0 as 10 do
1	O CALA
	$= 4a^2 \int_0^{\pi/2} \sin 4\theta d\theta$
	4 d) s em + 9 do
	- A 1 (71), A
	= 4 a = 17/2 sin 4 0 cos 0 do
	= 40° B (B 5, 1)
	= 402 5 15
	$=40^{2}$ $\boxed{\frac{5}{2}}$ $\boxed{\frac{1}{2}}$
	2 13
	= 20 ² 3 x1 1/2 17T
	111
	= 3021
MY	ROUGH NOTE BOOK 4

B(0+8840+50)

P(r, o)

Bounded By Curve in Polar Form equation and Radial Vectores.

let ruine eq 8. f(0) and a moves from 0, to 0,

trea bounded by come i.e asia DAB: 1 102 82 do

trea of closed curives sten of closed course were

x = f(t) and $y = f_2(t)$ and t mones from t, to to

8. when = 1 $\begin{cases} t_2 \\ 2 \end{cases}$ $\begin{cases} x dy - y dx \\ dt \end{cases}$

I Prove that the area of and Toop at the curve a v= a sin 30 is I Ta2

000.

Luive eq. $\tau = a \sin 30$

After curve treating, the summe is

Therefore area of one loop

Put $30 = \phi$ $do = d\phi$

MY ROUGH NOTE BOOK 0 ->0 中かれ MANITALITY

tangent

$$T = \frac{a^2}{2} \int_0^{\infty} \frac{\sin^2 \phi}{3} d\phi$$

$$\int_{0}^{a} f(x) = \int_{0}^{a/2} f(x) dx$$

$$:: \sin(\pi - \phi) = \sin \phi$$

$$T = \frac{\alpha^2 \times 2}{2 \cdot 3} \int_0^{\pi / 2} \sin^2 \phi \, d\phi$$

$$= \frac{a^2}{3} \int_0^{\pi/2} \sin^2 \phi \cos^2 \phi \qquad \int_0^{\pi/2} \sin^m \theta \cos^m \theta$$

$$= \frac{a^2}{3} \int_0^{\pi/2} \sin^n \phi \cos^n \phi \qquad = \frac{a^2}{2} \left(\frac{m+1}{2}, \frac{m+1}{2}\right)$$

$$= \frac{a^2}{3} \int_0^{\pi/2} \sin^n \phi \cos^n \phi \qquad = \frac{a^2}{2} \left(\frac{m+1}{2}, \frac{m+1}{2}\right)$$

$$= \frac{0^2}{3} \frac{1}{2} \pi$$

$$I = \frac{\pi a^2}{12}$$

$$= \frac{\pi a^2}{4}$$

Q. Find the corea enclosed by the cardioid
$$r = a(1+\cos\theta)$$

Given swime $r = a(1+\cos\theta) - 0$

Asses of OAB =
$$\frac{1}{\alpha} \int_{0}^{\pi} v^{2} d\theta$$

$$= \int_{0}^{\pi} \alpha^{2} (1 + \cos^{2}\theta)^{2} \cos \theta d\theta$$
MY ROUGH NOTE BOOK $\frac{1}{2}$

$$I = \frac{\alpha^{2}}{2} \int_{0}^{\pi} \left[2\cos^{2}\left(\frac{\alpha}{2}\right) \right]^{2} d\alpha$$

$$I = \frac{\alpha^{2}}{2} \int_{0}^{\pi} \left[\cos^{4}\left(\frac{\alpha}{2}\right) \right] d\alpha$$

$$I = 2a^2 \int_0^{11/2} 2 \cos^4 \phi \ d\phi$$

$$= \frac{4a^2}{2} \beta\left(\frac{1}{2}, \frac{5}{2}\right)$$

$$\frac{T = 3\pi a^2}{4}$$

Proper that the over bounded by the come on= a cost

$$x = a cost$$
 }

ad
$$t=0 \Rightarrow x=0 \quad y=0$$

Since www O is closed

Herefore may area between the civiles

$$= \frac{1}{2} \int_{t_1}^{t_2} \left(x \, dy - y \, dx \right) dx$$

$$= \int_{2}^{2\pi} \left(ab \cos^{2}t + ab \sin^{2}t\right) dt$$

$$= ab \left[t\right]^{2\pi} \qquad sin^{2}t + cos^{2}t = 1$$

$$= 2 \qquad \int_{0}^{2\pi} dt = \left[t\right]^{2\pi}$$

$$= \pi ab$$

Prione that the area of the loop at the curve
$$x = a(1-t^2) \qquad -1 \le t \le 1 \text{ is } 3 = a^2$$

$$y = at(1-t^2) \qquad y = at(1-t^2)$$

$$x = a(1-t^2) \qquad y = at(1-t^2)$$
at $t = -1$

$$x = 2a = 0 \qquad y = 9$$
at $t = 1$

$$y = 0 \qquad y = 0$$

Area of the loop =
$$\int_{-1}^{1} a(1-t^{2}) \left[a(1-t^{2}) + at(-2t)\right] dt$$

$$= \int_{-1}^{1} a(1-t^{2}) \left[a - at^{2} - 2at^{2} + 2t^{2}a\right] dt$$

$$= \int_{-1}^{2} a^{2} \left[1 - t^{2}\right] dt - at^{2} - 2at^{2} + 2t^{2}a dt$$

$$= \int_{-1}^{2} a^{2} \left[1 - t^{2}\right] dt - at^{2} - 2t$$

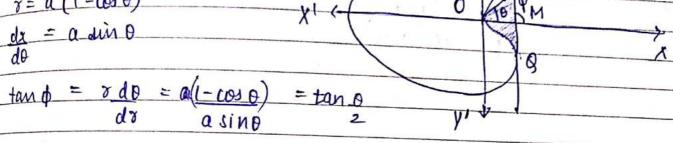
$$= \int_{-1}^{2} a^{2} \left[1 + t^{4} - 2t^{2}\right] dt$$

$$= \int_{-1}^{2} a^{2} \left[1 + t^{4} - 2t^{2}\right] dt$$

$$= \frac{1}{2} a^{2} \left[\frac{1}{5} + \frac{1}{5} - \frac{2}{5} \right]^{1} = \frac{1}{2} a^{2} \left(\frac{16}{15} \right)$$

$$= \frac{8}{15} a^{2}$$

MY ROUGH NOTE BOOK


I find the acrea included byw the cardiod y=a(1-coso)

es is double pt

dangent of the cardioid

which is to X axis

at P, $\psi = \pi/2$ $\gamma = a(1-\cos\theta)$ $dx = a \sin\theta$

$$\frac{30}{2} = \frac{1}{4} = \frac{30}{2} = \frac{11}{2} = \frac{30}{2} = \frac{11}{2}$$

$$OP = a \left(1 - \cos \pi \right) = a$$

$$\frac{OM}{OP} \frac{COS}{3} + \frac{M}{2} = \frac{Q}{4}$$

$$\frac{MP = 0P \sin \mathcal{H}}{3} = \sqrt{3} a$$

$$\frac{1}{2} \text{ avea of } 1 \text{ omp} = 1 \text{ om} \text{ mp} = \frac{1}{2} \times \frac{\sqrt{3} a^2}{16} = \sqrt{3} \frac{a^2}{32}$$

$$= \frac{a^2}{2} \int_{0}^{H/3} 1 + \cos^2 \theta \cdot 2 \cos \theta \, d\theta$$

MY ROUGH NOTE BOOK

$$= \frac{\alpha^{2}}{2} \left[(0 - 2 \sin 0)^{\frac{11}{3}} + \int_{0}^{\frac{11}{3}} \frac{1 + \cos 20}{2} d\theta \right]$$

$$= \frac{\alpha^{2}}{3} \left[\frac{11}{3} - \sqrt{3} + \frac{11}{6} + \frac{\sqrt{3}}{8} \right]$$

$$= \frac{\alpha^{2}}{2} \left[\frac{11}{3} - \sqrt{3} + \frac{11}{6} + \frac{\sqrt{3}}{8} \right]$$

$$= \frac{\alpha^{2}}{2} \left[\frac{11}{3} - \sqrt{3} + \frac{11}{6} + \frac{\sqrt{3}}{8} \right]$$

$$= \frac{\alpha^{2}}{2} \left[\frac{111}{3} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3}$$

about the initial line & about the initial line & $= 2 \left(50MP - ay bRPM \right)$ $= 2 \left(5a^2 - a^2 \left(4\pi - 7\sqrt{3} \right) \right)$

$$= 2 \frac{\alpha^{2}}{16} \left(\frac{\sqrt{3} - 4\pi + 14 \sqrt{3}}{2} \right)$$

$$= \frac{\alpha^{2}}{16} \left(\frac{15\sqrt{3} - 8\pi}{2} \right)$$

```
Decreasing condition x_1 > x_2 \Rightarrow f(x_1) \in f(x_2)
                                        PAGE NO.
                                       DATE: 1 1
        4. Mean Value Theorems
  ROLLE'S THEOREM
 If a function of defined on [a,b] is
  a) continuous on [a,b]
  b) differentlable on (a,b)
  c) f(a) = f(b)
   then 3 c = (a, b) st f'(c) = 0
Proof: " ((a) is continuous in [a, b]. Therefore ((a) is bounded
    and has supremum and infimum in [a,b]
 Let supremum f(xe) = M and infilmum f(xe) = m
  then I c, d & [a, h] such that
   f(c)=m and f(d)=M
  House two possibilities
Case I: If m = M
     then f(a) is constant in [a,b]
       \Rightarrow f'(c) = 0 \forall c \in [a,b]
Case II: 4 M = m
       then M, m can not be equal to f (a) together
       Therefore atleast one of them say on will be different
       from f(a) or f(b).
       \vdots \quad f(c) = m \neq f(a) \Rightarrow c \neq a
                                            an fla). ((p)
        1(c) = m 7 1(b) = c 7 b
  i. c lies in open interval (a,b).
  Now use have to show that 1'(c) =0
    let, if possible f'(c) to then there are rure possibilities
  (i) if f'(c) < 0
      then 3 8, >0 such that function f(x) is decoursing in
      (c, c+ 8,)
```

fr(ce) to structly t

	DATE
e. f(ie) < f(e) = m	[Become $x \in (c, c+s_1)$ $\Rightarrow x > c \Rightarrow s(x) \leq s(c)$]
-> f(x) < f(v=m	V x e (c, c+s,)
→ ((x) < m	V x ((, (+ 81)
which is contradiction to pur	
(1) 4 4'(0) > 0	
then 3 8,00 such th	at f(to) is increasing in open
interval (c-s, c)	
:. f(∞) < f(c)	becg or 6 (C-8, 1)
	⇒ x cc => f(x)8 <f(0)< td=""></f(0)<>
> f(0c) < f(c) = m	
= 1(m) < m	in Englishme
which is again contradiction	to own fact that m is Infirmum.
Therefore our supposition is us	uong.
Thu, 3 c 6 (975) (0	1, b)
such that f'(c) = 0
1 n	11 1
Algebraic Interpretation of Ro	olle's inevern
TO and with all the	e tubo source of the first
f(x) = 0 then there she attention	ret one noon of eq. 1 int
between a and b.	
121 2 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1	
14, c) Journey	A. 18.8 (1.11)
The second secon	APP WAREN TO A TO
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 3 3 4 4 11 2
	· · · · · · · · · · · · · · · · · · ·
5 - 4 - 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Ministry - t
	F(b) then by Rol.
	C E CAROL

PAGE NO.:
DATE: / /

			The first description is the second of the s
		tion of Rolle's	Theorem
statement:			
	f(x)=c		
3			
	:		
	,		
	8.0	<u> </u>	of the South and
			a b
y rede	i of a curve	at a point 1	and B are some &
tangen	t at each	point on the	usve exist. Then atteast
one pt	from yw 1 0	and B when	e tangent is parallel
to X	accio	1	
4-14-1-2	as a sinta	- Then I'm and	2 11 1
Ex > Exan	alne the Valid	ity of the his	pothesis & conclusion of
Rolles	Theorem fo	re the foll	-6. 4
	N 1 2		
# The con	werse is not	true . Even if	the function of does not
satisfy	the conditions	of Rolles -theo	seem $\lambda'(\infty) = 0$ at the nt.
e in	(a, b) i.e. f	or any oc e (a.	b), $f'(x)=0$, all the
three	conditions of R	elle's Theorem	over sufficient but not
necesso	ry,		VV
d a d	Berry State	A 04 T.B. 11 P.S.	or Proposition of account 15
Another	Weful form	of Rolles In	MAZA
4 A	function of a	· defined on	[a, a+h] is such
that	it is:	1.0	Ling actif is such
[R.] con	thrusus in 1	La. a+b7	
[R2] die	ferentiable in	(a, a+h) as	ad
[R ₁]	(a) = f(a+h)	(1)	
the	n ∃0 € 10:	1) such that	f'(a+0h) = 0
and the state of the state of		, man could	T (UT ON) - V

PAGE NO.: continuous not break of about DATE: differentiable smooth $\lim_{x\to c} f(x) = f(c)$ f(x) = f(a) for a not left limit exist orbitrary f(x) = f(b) for b no right limit exist et will be differentiable when following limit exist f'(a) = lim x+a f(x) - f(a) Put x=a+h as x da h do $f'(a) = \lim_{h \to b} f(a+h) - f(a)$ Continuous but not Continuous but not differenti differentiable at A, B, C, D # close intervals means finite values of end points. Bounded Function - of function f(x) is said to be bounded if st. |f(x) | = M M > 0 s.t. (m) < f(x) < (M) De m, M upper bound lower bound

Scanned with CamScanner

SELECTION OF THE PERSON OF THE

1 Bounded above 2 Bounded below
$det \ \ \chi = \sqrt{-1, -2, -3}, \ occ. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
∞ ≤ -1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
so, -1 is bounded above set
77 = 1,2,3,4,}
This set is bounded below set
Similar concept applied in case of function.
Bounded above Function :- id function of (2) is said to be
bounded above if 7 MER such that
f(x) ≤ M y x upper bound
upper bound
Bounded below Function: - d function f(x) is said to be bounded
below if I m & R such that
f(x) ≥ m V x lower bound
supremum
SUPREMUM (least upper bound)
Let f: A → B be a real valued
function then MER is said to be supremum of function f(x)
if
$(i) f(x) \leq M \qquad \forall x \in A$
ii) V E > 0 (however small) I oc, EA such that
t (x1) > M-E x1 M-E
INITIMENA (Constat believe (can't be supremum
THE HOLD GREAT STATES SOUTH
Let f: A > B be so real valued function
then MER
i) $f(x) \ge m \forall x \in A$
11) $V \in > 0$ (however small) $\exists x, \in A$ s.t. $f(x_i) < m + \varepsilon$

	DATE: 1 1
VI. WOLD	are infinite upper bound
ille	x = 1-1,-2,-3, coo 3
	oc = -1 Supremum
	$x \leq -2$ infinite upper bound
	x = +3
	The posted Ashmina is for and
	n i Battan Improvint ya Conko
	the first and the same that the political interest in
	1000 1000 1000 1000 1000 1000 1000 100
F. 20	CONTRACTOR OF THE PROPERTY OF THE PERSON OF
	10 1 (m) 1
	Lucid 14th - Land

```
Ex-2 & Rolle's theorem applicable for the following functions in
               the interval mentioned against them. If so, then
                verify Rolle's theorem:
                a) f(x) = e^x \sin x [0,71]
                b) +(x) = |x| [-1,1]
      a) &, since the standard functions ex & sin x are
                           continuous for every value of x, therefore
                             their product will also be continuous for every
                               value of x, particularly, in [0,77]
          R2 ('(x) = ex ( sin x + cosx) which is not infinite tr
                                   indeterminate, therefore the function of is differenti-
                                    able in (0,Tt)
                  R_2 f(0) = e^{\circ} \sin 0 = 0
                                                                                                                               \sin 0 = 0
                                     f(∏) = e<sup>∏</sup> sin ∏ = 0 sin ∏ \ = 0
                                              == f(0)= f(T)
                Rolled Theorem. Therefore, kolles theorem is applicable of
                      accordingly there must be atleast one point ( &in (0,71)
                        where f'(c) = a
                                \Rightarrow e<sup>c</sup> (sin c + cos c) = 0
                                 · since for any finite value of a ec +0
                           :. sin c+ cos c=0 => tanc=-1
                                         => tans c = tan (- 11/4)
                                               =) c = n\pi + (-\pi/4) \qquad n \in \mathbb{Z}
                                                          If tan 0 = tand
                                                          then 0 = mm nTC + d
                   Replacing n=0,1,2,3,...
                                              (= -1/4, 311/4, 111/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 117/4, 
                                 Clearly, 371 € (0,71)
```

logab = logeb log amb" = n loga PAGE NO.: Continuous on Real Line b) $f(x) = |\infty|$ [-1,1] particularly in [-1,1]

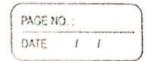
f(x) = [x] is continuous for every value of x,

particularly in [-1,1]

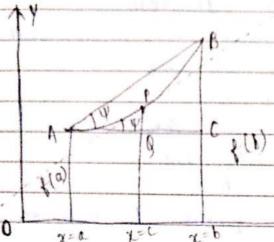
f(x) is not differentiable at x = 0; $\frac{p \cdot f'(0)}{p'(0)} = \frac{f(x)}{p'(0)} =$ Hence Roller theosem is not applicable for the given function in (-1,1) Ex-3 Is Rolle's theorem applicable for the following function in the interval [a, 6]? If yes, then verify the theorem: $f(x) = log \left\{ x^2 + ab \right\}, \quad 0 \in [a, b]$ f(xc) = log (xc2+ ab) - log x- log (x+b) is continuen in [a,b] being composite function of continuous functions in [a, b] R2: f(x) = 2x - 1 is not infinite or indeterminate $x^2 + ab = 3c$ for a < 3c < b. therefore f'(x) is differentiable in (a, b). $f(b) = \log \left(\frac{b^2 + ab}{b(a+b)} \right) = \log 1 = 0$ Therefore f(a) = f(b)Thus, the given function of satisfies all the three conditions of Rolle's theorem. Therefore, Rolle's theorem & applicable and now accordingly there must be atleast one pt. x = c in (a,b) where f'(c) = 0i.e. f'(c) = 2c - 1 = 0 $c^2 + ab = c$

#Every Polynomial is differentiable &

	PAGE NO.: DATE: / /
$c^2 = ab$	a, b, e in 618
c = + Jak	then & b
	62 - 61 6 = Sac
out of these two value of c, one take ((h) being 6114 01
a and b and - Jah & (a,h)	75/
fonce Rolle's theorem is applicable for	or f(x) on [a, b]
Ex-4 Show that b/w any 2 roots of ex	108 N = 1 Jhou
exists at least one right of $e^x \sin x = 1$	ws r 1, there
Let a and b be the rook of po	2. Px cosx=1. then
8 e cos a = 1	,
P. COS 6 = 1	
consider the following function defin	red in [a,b]
$\frac{(\mathfrak{B}X = 1)}{\varrho x} = \varrho^{-\chi}$	Tauri.
$f(x) = e^{-x} - \cos x = \infty$	
0 20 0	
R, The given function being the differe	nce of 2 standard!
continuous functions in [a, b] is contin	none in [a, b]
$R_2 + 1/x = -e^{-x} + i$	6
R ₂ $f'(x) = -e^{-x} + \sin x$ exists for $f(x)$ is differentiable in (a,	$x \in (a,b)$
$R_3 + (a) = e^{-a} - ca = e^{-a} = 0$	b)
$f(b) = e^{-b} - \iota e b = e^{-b} - e^{-b} = e^{-b}$	(from D)
(a) = (1h)	A .
They to the given lungtion !	all h
of Rolles theorem. Therefore, Rolles there	the 3 condition
A CHARLES AGE IT TO A TO A	Me logist 4 20 6.
(a,b) whose 1'(c)=0	the can


PAGE NO.:

 $\Rightarrow -e^{-c} + \sin c = 0$ $\Rightarrow e^{c} \sin c - 1 = 0$ $\Rightarrow \text{ the roots of } e^{\infty} \sin x - 4 = 0 \quad \text{is } c \in (a,b)$


Hence, atteast one root of ex sin x = 1 lies b/w 2 roots
of ex cos x=1

Scanned with CamScanner

	t Mean Value Theorem
Lag	a function of with domain [a, b] is such that it is
4	(L1) continuous in [a,b], and
	(L2) differentiable in (a, b)
	then $\exists c \in (a,b)$ such that
	f'(c) = f(b) - f(a)
	b-a
Perox:	Let us define a new function F with domain [a, b]
- Polog	Employed the given function as follows:
	F(x) = f(x) + Kx
ushe	re & k is a constant to be dotermined such that
wie	F(a) = F(b)
P. A	$f(\alpha) + k\alpha = f(b) + kb$
	$\frac{1}{h}(a) - \frac{1}{h}(b) = \frac{1}{h}(b-a)$
	$f(a) - f(b) = k(b-a)$ $how k = b'(c) \qquad k = -[f(b) - f(a)] \qquad 0$
	b-a
R ₁ R ₂	: f(x) & kx are continuous in closed interval [a,b]
San Best	and differentiable in (a,b). So sum of 2 continuous
	Princetions me Table and differentials in last
R ₃	F(a) = F(b) [by the condition of consti
Th	us, F satisfies all the 3 conditions of Rolle's Theorem
the	refore accordingly, therefore must be atleast one point
C	Ein (a, b) such that
13 50 6	F'(c) = 0
3 14 Sec.	f'(c) + k=0
	$\Rightarrow k'(0) = -k$
	= f'(c) = f(b) - f(a) {from 0}
	b-a

Geometrical Meaning of Mean Value Theorem

If a curine y = f(x) is continuous b/w two given points whose abscissed one x = 0, and x = b respectively of a tangent can be drawn to the surve at every point then there exists atleast one point x = c, $c \in (0,b)$ such that the tangents there at is parallel to the chord foining the two given and points.

ton-you

It the arc APB represents the graph of the bunction y-f(x) and a and b be the ordinates of A and B respectively foin AB Draw perpendiculars from A and B on a axis.

Let the shord AB makes an angle y with the x-axis, then from the xight angled a ACB.

tan y = ceAc

 $= f(b) - f(a) = f'(c) \qquad a < c < b$ $= f(a) = f'(c) \qquad (from Lagranges Mr)$

PAGE NO).:		
DATE:	1	1	

ANOTHER USEFUL FORM OF LAGIRANGE'S MEAN VALUE THEOREM.
If a function f(x) defined on close interval [a, a+h] such
i) continuous on [a, a+h] and
ii) differentiable on (a, ath),
then there is atleast one point o lies in open interval (0,1)
such that
f'(a+0h) = f(a+h) - f(a)
n, in the second
of we put 6-a=h in Lagranges mean value theorem
b = a + h
then any fit c can be taken as c= a+0h between a and b
ushere 0 < 0 < 1
f'(a+bh) = f(a+h) - f(a)
at h-a
f'(a+bh) = f(a+h) - f(a)
hris = feeti
12 to 116 to 1
Important Deductions from Lagranges MVT
If a function f(x) is continuous in interval [a, b] & differentials
in interval (a,b) then $\forall x \in (a,b)$.
a) $f'(x) = 0 \Rightarrow f(x)$ is constant in interval $[a,b]$.
b) b'/ m) co -> 1/m) " + "-+" do como fin in interveral abt
e) (x) > 0 = 1(x) is resintly increasing in interval (4)
let in and in (x, (x,) be any two diff pts in (a.b)
i.e. a < x, < x, < b
$\Rightarrow [x_1, x_2] \subset [a, b]$
af [a,b] is continuous & differentiable in (a,b)
CANTINUAL IN LX17 23
differentiablien (x1, x2)

PAGE NO.:

DATE: / /

by Lagranges Theorem FC 6 (x, x2) 5.t.	
$f'(c) = f(x_2) - f(x_1)$ $x_2 - x_1$	$-\mathcal{O}$
a) $f'(x)=0$ $\forall x \in (a,b)$	
Put $x = c$	41 11 11 14 14 14 14 14 14 14 14 14 14 1
$f'(c) = 0$ $\forall c \in (a,b)$	12001
from eq. 0	
$f(\chi_2) - f(\chi_1) = 0 \qquad \forall \chi_1, \chi_2$	€ (a.b)
Z2-X1	. ().)
$\Rightarrow f(x_2) = f(x_1) \qquad \qquad \forall x_1, x_2$	€ (a.b)
\Rightarrow $f(x)$ is constant in $[a,b]$	36.0
() () () () () () () () () ()	
b) f'(x) <0 \tau \tau \(a_1b)	
Put X=C	
1'(0)<0	
	······································
from 0 $f(x_2) - f(x_1) < 0$ $x_2 - x_1$	
$f(x_2) \leftarrow g(x_1)$	
But 7. (x.	· · · · · · · · · · · · · · · · · · ·
thus fis monotonically decreasing in [a, b]	1
in a, b	
1\	1
$f(x) > 0 \qquad \forall x \in (a, b)$ $f(x) > 0 \qquad \forall x \in (a, b)$	
1'(1) \ 2	
from Q , $A(x_2) - A(x_0) > 0$ $\forall x_1 \neq x_2$	- C / A h1
from 0 , $f(x_2) - f(x_4) > 0$ $\forall x_1, x_2 - x_1$	$2 \in (a,b)$
$\int \{(X_2) > A(X_1)$ But $X_2 > X_1$	3 1
Thu & is strictly increasing in [a, b]	
thing of string with the fat of	***
	2
The Contract of the Contract o	

```
Theorem If two functions f(x) and g(x) are continuous in closed
         interval [a,b], differentiable in open interval (a,b)
    and f'(x) = g'(x) \forall x \in (a,b), then the difference g the functions f(x) - g(x) is constant in closed interval
     Define a new function F(x) = f(x) - g(x)
              F'(x) = f'(x) - g'(x) = 0  \left[ -f'(x) = g'(x) \right]
   in (a,b). Thus F(x) are continuous in [a,b] & differentiable in (a,b)
             \Rightarrow F(x) = 0
            \Rightarrow F(x) = constant function.
            \Rightarrow f(x) - g(x) = constant in [a,b]
Example-Apply Lagrange's MVT for function f(x) = log (1+x) to

prove that 0 < [log (1+x)]^{-1} - x^{-1} < 1

\forall x > 0
   For \forall x > 0, f(x) = log(1+x) is continuous in [0,x] &
         differentiable in to (0,x)
           10 know ('(a+0h) = f(a+h)-f(a) (a, a+c)
          f'(0+Bx) = f(B+x) - f(0)
                                                             =>[0,0+2]
                                                            01011
                        f(x)-f(0)
                                                   f(0) = log 1 = 0
      x 1'(BX) =
                      = \log(x+1) \quad 0 < \theta < 1
    Again 200 & 0 < 0 < 1
                      = D L Ox Lx
                     => 1<1+8x <1+x
                                                            = 0x 2x
```

PAGE NO.: DATE: / / 1+ x 1+0x 1+0x 1+2 x < log (1-1x) < x x ([log(1+x)]-1 < x+1 1-1 < [eg (1+x)]-1-x-1 < x+1-1 0 < [log (1+x)]-1 - x-1 <1 Example 2 Vorify Lagrange's MVT for the following for: $f(x) = x(x-1)(x-2) \qquad \forall x \in [0, 1/2]$ m, (x-1), (x-2) one continuous & differentiable, so [(x) will be continuous in [0, 12] & differentiable in (0, 1/2) : Lotisfying sagranges MVT , so acc to theorem & I at least one c in (0, 1/2) where f'(c) = f(1/2) - f(0)1/2-0 $\frac{(c-1)(c-2)+c(c-2)}{+c(c-1)} = \frac{3/8}{6} - 0$ 1/2 (c2-3c+2)+ c2-2c+(2-c = 3/4 312-bc +2 = 3/4 $12c^2 - 24c + 5 = 0$ C = 24 ± \576 - 240 = ± √336 24 $C = 1 \pm \sqrt{21}$ Here C= 1 + 521/6 4)1/2 but C= 1-21/ C= 1-121 & 10,10 Hence resisted LANT

Scanned with CamScanner

Manca	
CAUCHY'S	
GAUCHY'S MEAN YALVE THEOREM	_
TANK TANK TANK TANK TANK TANK TANK TANK	-
i) continued such that both functions are	
THE CHAIN AND A SECOND ASSESSMENT OF THE CONTRACT OF THE CONTR	-,
IN DADY SISTEMAN (1
H V (() ()	10
then $\exists c \in (a,b) \text{ st} \cdot g(b) - g(a) = g'(c)$ $f(b) - f(a) \qquad f'(c)$	44
f(b) = f(a) $f'(c)$	4
Real Real Real Real Real Real Real Real	-
the way that way the)]
f(b) - f(a)	1
for this show that f(b) \neq fa	1
So let $f(a) = f(b)$	1
then satisfies all conditions of Rolle's theorem.	/
Tener & c (a,b) s.t. +(c) +0 but this contradict	1
with 3rd condition of our given theorem. [(b)-	_
$f(a) \neq f(b)$ b-a	1
Again assume $\phi(x) = g(x) + Af(x)$ $\forall x \in (a,b)$	120
where A is const. $s.t.$ $\phi(a) = \phi(b)$	(A) (A)

A(b) = A(b) + B(b)
je g(a) + A f(a) = g(b) + A f(b)
$A = -\frac{g(b) - g(a)}{f(b) - f(a)}$
Here A exists as $f(a) \neq f(b)$
Here A exists as f(a) 7 fcs continuous & differentiable for
Thus \$\phi\$ is continuous in [a,b] & differentiable in (a,b)
Thus function of (x) satisfies all conductors
$so, \exists c \in (a, b)$ sit.
$\phi'(c) = 0$
g'(c) + A f'(c) = 0
A = -g'(c)
- t'(c)
from 0 & 0,
$\frac{g(b)-g(a)}{f(b)-f(a)}=\frac{g'(c)}{f'(c)}$
- If use to take f(x) = x in cauchy's MVT then nee " got
- Lagranges MVT.
Little Class Light
ANOTHER FORM OF CAUCHY'S THEOREM.
If in Enterwal [a, a+h] two functions f(x) & g(x) are defined
S.t. both functions are
i) continuous in interval [a, a+h]
ii) differentiable in interval (a, a+h)
$f'(x) \neq 0 \forall x \in (a, a+b)$
then $\exists \theta \in (0,1)$ sit.
g(a+h) - g(a) = g(a)
f(a) f'(a+0h)

```
Example 1) Verify Cauchys MVT for the following function:
f(x) = x^2 \quad g(x) = x^3, \forall x \in [1,2]
      = f(x) & g(x) wer continuous in [1,2] & differentials.
          in (1,2) since f(x) & g(x) are continuous and differentiable in all interwals.
          ALL q(x) = x^2 \neq 0 \forall x (1,2) Since 0 \neq (1,2)
      Thus satisfy all 3 conditions of cauchy's MVT.
        JCE (1,2) sit.
                 \frac{f'(0)}{g'(0)} = \frac{f''(2) - f(1)}{g(2) - g(1)}
                         g(2) - g(1)
                          14 = 9 =
                     C = 0 \notin (1,2)
                    but (= 14 & (1,2)
  = 18x-2 find value of a using country's MVT if f(x) = Lin x
          & g(x) = cosx, ∀ x ∈ [0, +1/2]
                           no break = continuous
                          no corner pt; smooth = differentiable
  lifecentiability
          A(x)= sen x
          11(x) = cos x
                              Now check for given interval [0,71/2] if it has finite value it is differentiable
                                              so f(x) = sin x is differentiable
                  COS 0 00 =1
                                 Les T1/2 = 0
```

```
f(x) & g(x) are continuous & differentiable
  g(x) = col x in (a,b)
           g(x) = -i n x \neq 0 in (0, \pi/2)
  Applying Couchy's MVT
      f(a+h) - f(a) = f'(a+oh)
      g(a+h) - g(a) g'(a+0h)
      ein (ath) - sin a
                          = - COS (a+06)
       cos (a+h) - cos a
                               sin (a+oh)
       2 ces (athta)
                    sin (ath-a)
                                = -cot (a+0h)
       - 2 sin (athta)
                     sin (ath-a)
       2 ws (2ath)
                     sin h
                               = -cot (atoh)
          sin
          Cot
                           = cos (a+oh)
                             a+Oh
                        0 = 1/2 E
                                      (0,1
            Cauchy's MVT to evaluate the following
                      cas (TIX/2)
                 b = 1
                            +(1) -+(x)
                              9(1)
                  CAS TIX/2
                      log
                           1/x
```

PAGE NO. : DATE: 1 1 xxcx1 then from O Il sin/Ilc lim log x -> 1 Sin II Examine the validity of the hypothesis & conclusions of Rollis Theorem for following function. (a) f(x) = |-|x-1|, x € [0.2] (a) $f(x) = x^3 - 4x$, $x \in [-2,2]$ 120-1 So first x-1=0 =) x = 1 2 41 equal नहीं भी लगाओं आ 221 दोनी जगह लगाओ 04 x < 2 1 XII 1+x-1=x 00 psab 1Cx62 to check differentiability $\int_{(1)}^{(1)} = \lim_{x \to 1^+} \int_{(x-1)}^{(x)} \frac{1}{x} \int_{(x-1)}^{(x)} \frac{1}{x}$ Red x= 1+h lim - 9 = = lim 2-1-h-1 h->0 1+h-1 = lim 2-11-LHU at h=0

Here $Rf'(1) \neq Lf'(1)$ and $L \in [0,2]$ & inner differentiable at x=1 Thus, Rolles Theorem is not verified for introp given function in interval [0,2]. x [[-2,2] lince polynomial is continuous & differentiable in on real no. b) f(x)= x3 - 4x it is also continuous in [-2,2] & differentiable in (-2,2) f(-2) = -8 + 8 = 01(2) = R-B=0 -{(-2) = f(2) Thus, given function satisfies all 3 conditions of Rolle's Theorem $f'(x) = 3x^2 - 4 = 0$ Now $x^2 = 4/3$ x = ± 12/13 $\frac{2}{\sqrt{3}} \in \left(-\frac{2}{2}\right)$ Thus, in interval (-2,2) there exists atteast one pt-c=2+(-2) where f'(c) = 0. Hence folles Theorem is verified 82. \$ f(x)= (x-5) log x, then show that the eq. x log x+ x-50 estisfied by atteast one value lying b/w 1 &5. $f(x) = (x-5) \log x$ $f'(x) = \log x + x-5$ also fl(x) is fivile in (1,5). Thus (1) = - + log 1 = 0 continuous in [1,5] (5)= (5-5) log 5=0 istilities all 3 condition of Rolle's theorem. Thus 3 exist a ptivity

st. | (x)=0 > log x + x-5=0 = x log x + x-5=0

us eq x log x + x-5=0 integral 22 Thus eq 2 log x + 2-5=0 interval # (1,5) \$1 7 80 00 41 39 00 41 मान के लिए बांव्रिट है

DAIE: / /

GENERAL MEAN VALUE THEOREM					
If in internal $[a, b]$ there functions $f(x)$, $g(x)$ & $h(x)$					
agriculture all 3 functions are					
i) continuous in interval (a,b) &					
ii) differentiable in interval (a,b)					
then $\exists c \in (a,b)$ such that					
f(c) g'(c) h'(c)					
$f(a) \qquad g(a) \qquad h(a) \qquad = 0$					
- 1 f(b) 9(b) h(b)					
who deduce the couchy's MVT & Lagrange's MVT using by					
this theorem.					
Proof: Jet F(x) be a function in closed interval [a, b]					
such that					
$F(x) = \{(x) g(x) h(x)$					
t(a) g(a) +(a)					
(b) o(b) h(b)					
= $f(x)[g(a)(h) - h(a)g(h)] + g(x)$					
constant					
= Af(x) + Bg(x) + Ch(x) (fet)					
The Court Constants					
we know f(x), g(x) h(x) age continuous in to 17					
and differentiable in (a,b). Thus lineau combina-					
tion of differentiable for is again differentiable &					
linear combination of continuous for again continuous					
Thus f(x) is continuous in [a,b] & differentiable in (a,b)					
Also $F(a) = 0$ $F(b) = 0$					
The same and the s					
$\Rightarrow \oint F(a) = F(b)$ Thus $F(a) = F(b)$					
Thus F(x) entirty all & condition of Rolle's Theorem					
bo , $f \in (a,b)$ s.t. B					
F'(x) = 0					

PAGE NO. : DATE:

	pico)	010	£1(c)	>
= D	A(a)	9 (a)	f(a)	
	h(b)	9(6)	H(b)	8.1

Deduction: h(x)=k If h(x) = k प्र ही आएगा-1 then h(a) = h(b)h(a) = k h(b) = k So, h'(x) = 0 h'(0) = 0 They som General

Mean Value Theosem g'(c) = 0 g(a)k-g(b) k] f (b) - f (b) (a) g(b) - g(a)

> This is Cauchy's Mean Value Theorem

& h(x)=k where k is constant mean = 0

which is Lagranges Mean Value

⇒ f(x) differentiable & A f'(x) exist and III
PAGE NO.: DATE: 1 1
SECOND MEAN VALUE THEOREM
दितीय माष्ट्रथमान प्रमेण
of function f(x) defined in closed interval [a,b] in such a
way that f(x) is
i) exists & continuous in closed interval [a, b]
ii) differentiable ein open internal (a,b)
then $\exists c \in (a,b)$ s.t.
$f(b) = f(a) + (b-a) f'(a) + (b-a)^2 f''(c)$
Proof: Let polynomial
$g(x) = f(x) + (b-x) f(x) + (b-x)^{2} B $
continuous à differentiable
where B is constant such that g(a) = g(b)
g(a) = g(b)
$f(a) + (b-a) f'(a) + (b-a)^2 B = f(b) - 2$
Thus g(x) is differentiable à continuous. sense linear
combination of differentiable & continuous on is differentiable &
B continuous. Also g(a) = g(b). Hence, all 3 conditions of Rolle's Theorem is satisfied.
Then there exists $(\in (a,b))$
a'(x) = a'(x) + (b-x) a''(x) - b'(x) - (b-x) a
a'(x) = (b-x) f''(x) - (b-x) P
g'(c) = (b-c) ["(c) - b-c) B [prom3]
$(1 c) \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] = 0$
$B = \prod(C) : C \in \text{open interval}(a,b)$
to as bis net
equal to s

```
PAGE NO.:
```

```
f(0) + (b-a) f'(0) + (b-a)^2 f''(c) = f(b)
    from (2)
                       with domain [a, at h] then \exists \theta \in (0,1)
                         Mean Value Theorem will be as
      a function f(x)
    for which second
         f(a+h) = f(a) + hf'(a) + h2 f"(a+ Dh)
     P-23
                                function f(x) is continuous & pourse
                         [a,b]
             in interval
Example 6
                                 x = c \in (a,b) then show that
         finite derivatives for
                   के लिए उ function की जरूरत होती है, so use will use
    General MVT
     Second MVT
                                 exist
        f'(x) will exist in the neighbourhood of
                                  for both interval, condition of Second MUT is applied
                         MVT in interval (c-h,c) and (c,c+h)
                                                            ₩ 0 < 0,<1
                                                           0 < 0 , 11
  100 lim 1((+h)+ 1((-h)-21(c)
```

```
PAGE NO .:
                                            3
                     (x+h)^3 = x^3h+3x^2h'+3xh^2 \left(-pAxe^{\circ}h^3\right)
      find the value of o if
                      f(x) + h f'(x) + h^2 f''(x + oh)
  where (i) f(x) = x^3 + x
           (ii) f(x) = (x-a)^{5/2}
                                       when x ->
            f(x) = x^3 + x
                                              P(x+h) = (x+h) 3 + x+h
            \xi''(x) = 6x
      1(x+h) = 1(x) + h+'(x) + h2 f"(x+bh)
\frac{(x+h)^3+x+h}{2!} = x^3+x+h(3x^2+1)+h^2 6(x+\theta h)
      (x+h)^3 = x^3 + 3x^2h + 3h^2(x+\theta h)
              \Theta = \frac{1}{3} \in (0,1)
      f(x) = (x-a)^{5/2}
       f^{\dagger}(x) = 15 (x-a)^{1/2}
    f(x+h) = f(x) + h f'(x) + h^2 f''(x+oh)
    (x-a+h)^{5/2} = (x-a)^{5/2} + h \cdot 5 (x-a)^{3/2} + h^2 \cdot 15 (x-a+6h)^{1/2}
                      = \lim_{x\to a} (x-a)^{5/2} + \frac{5h}{2} (x-a)^{3/2} + \frac{15h^2(x-a+6h)^{1/2}}{8}
On taking lim x > a
                                                 01/2 = 8
             h^{5/2} = 15 h^2 (0 h)^{1/2} \Rightarrow
```

Scanned with CamScanner

If 1'(x) is finite then f(x) is differentiable.

PAGE NO.

0 + 6422.5

THEOREM MEAN YALUL GENERALISED

Taylor's Theorem with Lagrange's form of Remainder, If function f(x) defined in interwal [a, as hi] such that

i) descivatives f'(x), f"(x),..., f(n1) (x) upto (n-1) orders one

continuous in interval [a, a.th]

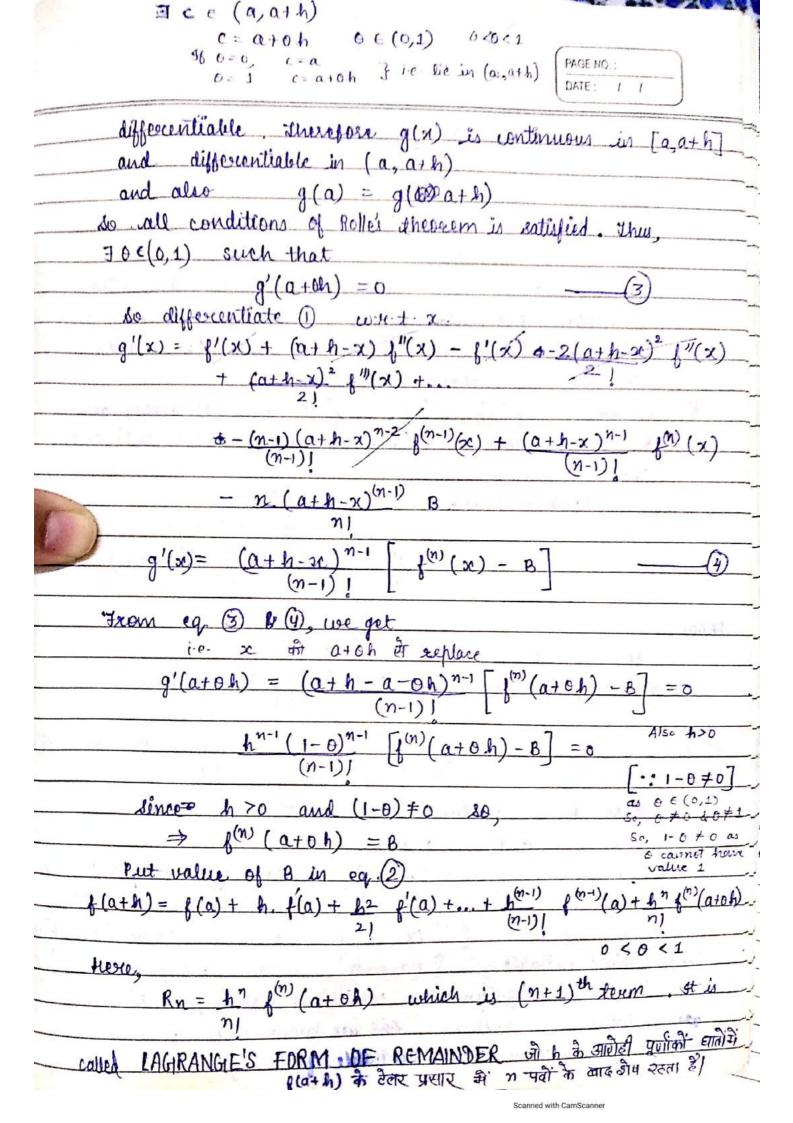
deceratives f'(x), f''(x),..., $f^{(n)}(x)$ upto n nedous one exists in interval (a, a+h) when = 0 c (0,1) such that

f(a+h) = f(a) + h f'(a) + h2 f"(a) + ...

 $+\frac{h^{(n-1)}}{(n-1)} f^{(n-1)}(a) + \frac{h^n}{n!} f^{(n)}(a+oh)$

PROOF:

Let us define a function g(x)


g(x) = f(x) + (a+h-x) ('(x) + (a+h-x)) ("(x) + ...

10 (01 a. h) (n-1)1 (n-1) (x) -+ (a+h-x) nB

where B is constant such that

g(a) = g(a+h) $f(a) + f'(a) \cdot h + \frac{h^2}{2!} \int_{a}^{n} (a) + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a) + \frac{h^n}{n!} B = f(a+h)$

Since f(x), f'(x), ... f(n-1) (x) is continuous in interval [a,a+h and differentiable in & Ca, a+h). where (a+h, x), (a+h, x) (a+h-x) is polynomial which is also differentiable continuous in real no. And we know linear combination of product of 2 continuous & differentiable 177 is again continuous

Particular Cases: Put c= a+(b-a)0 and

h = b-a in Taylor's Theorem

 $f(b) = f(a) + f(b-a) f'(a) + \frac{(b-a)^2}{2!} f''(a) +$

 $+\frac{(b-a)^{n-1}}{(n-1)!} \frac{(n-1)}{(a)} + \frac{(b-a)^n}{n!} + \frac{n}{(a)} c$ c e (a, b)

2. Put n=1 in Taylor's Theorem, we get Lagrangés MVT f(b) = f(a) + (b-a) f'(a)

 \Rightarrow $f'(\mathbf{c}) = f(b) - f(a)$

In above 1. let h=x-a then

 $f(x) = f(a) + (x-a) f'(a) + (x-a)^2 f''(a) + \dots + (x-a)^n f''(a)$

+ (x-a)n f(n) (c) accex

इसके फलन द्वारा १(x) का (x-a) की द्यातों में प्रसार कर सकते हैं)

Taylor's Theorem with Cauchy's Form of Remainder If function f(x) defined in interwal [a, a+h] such that) derivative f'(x), f''(x), ..., for) (x) of up to (n-1) ardive

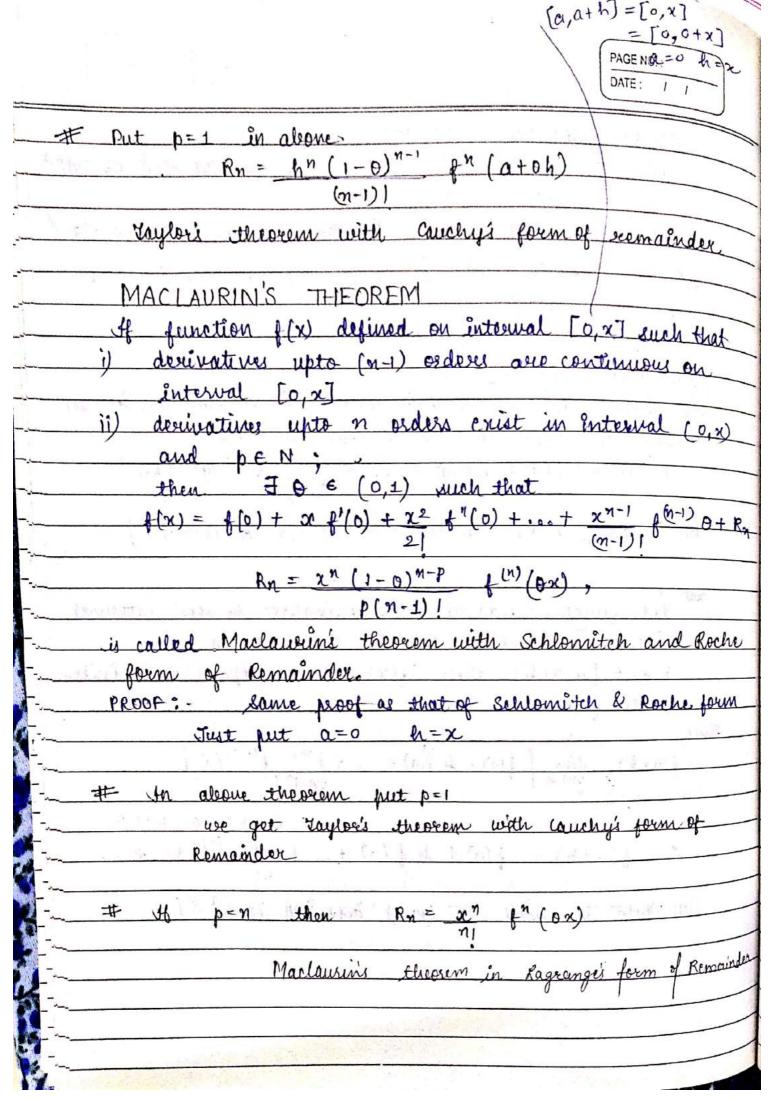
are continuous in interval [a, a+h]

ii) descivatives f'(x), f''(x), , , f''(x), unto n ordere are exists in

interval (a, a+h) then IO & (0,1) such that

 $f(a+h) = f(a) + h f'(a) + h^2 f''(a) + \dots + h^{(n-1)} f^{(n-1)}(a)$

+ hm (1-0)"-1 pm (a+0h)


PAGE NO.: DATE: / /

```
1908; Let
         g(x) = f(x) + (a+h-x) f'(x) + (a+h-x)^2 f''(x)
                +... + (a+h-x) n-1 f(n-1) (x) + (a+h-x) B -
              is constant such that
g(a) = g(a+h)
\Rightarrow f(a+h) = f(a) + h f'(a) + \frac{h^2}{2!} f''(a) + \dots + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a)
   f(x), f'(x), ..., f(x) (x) are differentiable in (a, a+h)
   Also linear combination of product of 2 continuous
    and differentiable és continuous & differentiable
     g(x) is continuous in [a,a+h] & differentiable in
      (a, a+h)
  thus estily all & conditions of Rolle's Theorem. The
    70 \in (0,1) such that
                  g'(a+oh)=0
  Differentiating eq 0 west or,
      g'(x) = \begin{cases} f'(x) - f'(x) + (a+h-x)f''(x) - f''(x) \cdot (a+h-x) \\ + (a+h-x)f''(x) + \dots + -(n-1)[a+h-x]^{n-2}f^{(n-1)} = \\ 21 \end{cases}
                   + \frac{(a+h-x)^{n-1}}{(n-1)} f^{(n)}(x) -
      g'(x) = (a+h-x)^{m-1} + (m) \cdot (x) - B
                   \frac{(a+h-a-bh)^{n-1}}{(n-1)!}f^{(n)}(a+bh)-B=0
\frac{(n-1)!}{(n-1)!}f^{(n)}(a+bh)-B=0
from 8 & 4)
```

DATE: / / $B = h^{n-1} \frac{(1-0)^{n-1}}{(n-1)!} f^{(n)} (a+0h)$ Put value of B in (2) $f(a+h) = f(a) + h f'(a) + \frac{h^2}{2!} f''(a) + \dots + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a)$ $+ h^{n} (1-0)^{n-1} f^{(n)} (a+0h)$ Remainder After on torms: $R_n = h^n (1-0)^{n-1} f^{(n)} (a + oh)$ Taylor's Theorem with Schlomitch & Roche form of Remainder If function f(x) defined on interval [a, a+h] such that i) derivatives f'(x), f''(x), $f^{(n-1)}$ upto (n-1) orders are continuous on internal [a, a+h] ii) derivatives f'(x), f"(x), ..., f"(x) upto n terms orders are exist on interval (a, a+h) and pEN; then FO E (0,1) such that $f(a+h) = f(a) + h f'(a) + h^2 f''(a) + ... + h^{n-1} f^{(n-1)}a$ (n-1)!+ hn(1-0)n-p gn (atoh); 0<0<1 PROOF: Jet $g(x) = f(x) + (a+h-x)f'(x) + (a+h-x)^2 f''(x) + \dots$ $\frac{+(a+h-x)^{n-1}}{(n-1)!} \frac{(n-1)}{(x)} + (a+h-x)! \frac{B}{B} = 0$ $\frac{(n-1)!}{(n-1)!} \frac{(n-1)!}{(n-1)!} \frac{(a+h-x)! \frac{B}{B}}{(n-1)!} = 0$ where B is constant such that $g(a) = g(a+h) + \frac{B}{B} = g(a+h) + \frac$

PAGE NO.:

Since f(x), f'(x), ..., $f^{(n-1)}(x)$ in interval (a, a+h) is differentiable to f(x), : Linear combination of & continuous for & differentiale function is again a continuous of differentiable function Thus function g(x) in interval [a, a+h] is continuous & differentiable in (a, a+h) g(a) = g(a+h) Thus g(x) satisfy all 3 conditions of Rolle's Theorem ∃ 0 € (0,1) such that Then g'(a+0h) =0 $\frac{(a+h-x)^{n-1}}{(n-1)!} f^{(n)}(x) - p(a+h-x)^{p-1}$ $g'(a+oh) = (a+h-a-oh)^{n-1}f^n(a+oh)-p(h-oh)^{p-1}B$ hn-p (1-0) n-p fn (a+oh) Put value of B in 2 $f(a+h) = f(a) + h f'(a) + h^2 f''(a) + ... + h^{n-1}$ (n-1)Remainder often n teams Rn = 1 (1-0) n-1 (n) (a+0h) p (n-1) 1 Put p=n in alone theorem Rn = hn for(a+oh) Taylor's theorem with Lagrange's form of Remainder.

PAGE NO.:

DATE: / /

POWER SERIES (FILT ADA)

ADA Σ an $(x-a)^{n}$ raig x=a-yz FILT Adolf energial & जहाँ an म लगा a अन्तर है तमा कर तास्तिविक अन्तर राशि है धात भेणी कहलाती हैं। [Zor Aut Taylors series] याद आंत्रराल [a, a+ h] मैं फलन परिमापित है तथा टैलर प्रमेय के स्थ्री प्रतिबंहीं की संतुष्ट करता है तो टैलर प्रमेयानुसार $f(a+h) = f(a) + h f'(a) + \dots + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a) + Rn$ अहाँ Rn, n पढ़ें के बाद टेलर का की व पक्क कहलाता है in which Let function f(x) at each descinative in close interval [a,a+h] exists and Rn -> 0 when n -> 00 xx ∈ [a,a+h] then f(x) can be expand in infinite f(a+h) = lim [f(a) + h f(a) + ... + h n-1 f(n-1) (a)] (a+h) = f(a) + h f'(a) + ... + hn f(n) (a) + ... अतः फलन का दक्षिण पक्ष (RHS) टैलर क्रेंगी कहलाती हैं।

```
Maclawin's Series
       f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \cdots + \frac{x^n}{n!} f^{(n)}(0) + \cdots
Exemple) use Joylor's Theorem to prove that
      tan-1 (x+h)= tan-1x+ h dinz . sinz - (h sinz) sin (z)+.
where z = cot -1 x
        f(x+h) = f(x) + hf'(x) + h^2 f''(x) + \dots + h^n f^n(x)
     f(x+h) = tan^{-1}(x+h)
        f(x) = \tan^{-1}(x)
                                                           = \sin^2 z
                                  1+cot2z
                                                 cosec<sup>2</sup> z
         f(x) = \sin^2 z
          \frac{(2x) = -1}{(1+x^2)^2} = -2 \cot z = -2 \cot z \sin^4 z
           Put this in 1
       tan-1(x+h) = tan-1x+ h sin2z+ h2 (-2cot z sin4z)+-
      \frac{\tan^{-1}(x+h) = \tan^{-1}(x+h) \sin x, \sin x}{1 - (\ln \sin x)^{2} \frac{(2 \sin x \cos x) + --}{2}}
     => tan- (x+h) = tan-1 x + (h sin z) sin(x) - (h sin z) sin(2z) +
Ex-2 find Cauchy's lagsanges remainder after n-terms in
       the expansion of following bunction log (1+x)
            Let f(x) = log (1+x)
                              1+2
                  (x) = -1
```

PAGE NO.: DATE:

on Maclawins expansion of f(x) cauchy's Remainder

$$R_{N} = x^{N} (1-0)^{N-1} t^{(N)} (0x)$$

=
$$x^n (1-0)^{n-1} (-1)^{n-1} (n-1)!$$

 $(n-1)! (1+0x)^n$

$$= \frac{(-1)^{n-1} x^n}{(1+\theta x)^n} (1-\theta)^{n-1}$$

$$= \frac{(-1)^{n-1}}{(1+0x)} \frac{x^n}{(1+0x)} \frac{(1-\theta)^{n-1}}{(1+0x)}$$

Lagrange's Remainder

$$Rn = x^{n} \int_{0}^{n} (0x)$$

$$= x^{n} (-1)^{n-1} (x-1)!$$

$$= (-1)^{N-1} \left(\frac{x}{1+\theta x} \right)^{N}$$

Ex-3 Show that the function $f(x) = e^{yx}$ can not be expanded Maclaurin's Series

$$f(x) = e^{ix}$$

$$f'(x) = -1 \quad e^{ix}$$
Infinite

$$f''(x) = e^{yx} \left(\frac{2}{x^3} + \frac{1}{x^4} \right)$$

Here function & its desirative at x = 0 is infinite Thus, cont doe expanded through Maclaurin's Sevies

PAGE NO.: DATE: the paver series expansion of sin or Find $f(x) = \sin x$ $f'(x) = col x = sin (\pi/2 + x)$ in interval [0, x] nth decevative excipt. if n is even if n is odd के प्रसार के लिए सिद्ध करना है कि Sin 57/2 = 1 इसके लिए मैक्लारिन प्रसार से Lagranges Remainder + 0<0<1 = xn sin (0x+ n 11) x1 6n (0x + n 11) Sinx [51] 20 serie all conditions of Maclaurini sories. Thus,