# REFRACTOMETRY

Presented By:

Dr. Joohee Pradhan

# CONTENTS

- Introduction
- Theory
- Instrumentation
- Specific and Molar Refraction
- Factors affecting Refractive measurements
- Applications

#### REFRACTOMETRY



- ➤ Refractometry is the method of measuring substances refractive index (one of their fundamental physical properties) for example, assess their composition or purity.
- ➤ A refractometer is the instrument used to measure refractive index ("RI"). Although refractometers are best known for measuring liquids, for quick evaluation of concentration of dissolved substances.
- ➤ Measurement of refractive index of unknown substance. measure substances dissolved in water and certain oils.



#### **PRINCIPLE**



Measurement of RI of unknown substance by measuring angle of refraction made when the substance is brought into contact with the medium (prism) of a known refractive index





# Refractive Index

- This is a measure of how much light slows down when it goes into a new medium.
- ▶ Symbol n
- ▶ n (vacuum) = 1

$$n = rac{C}{v} egin{array}{l} velocity of \ light in \ vacuum \ \end{array} \ velocity of \ light in \ vacuum \ \end{array}$$

n (medium) = c (speed of light in vacuum)

v (speed of light in medium)

# EXAMPLES

| Liquid          | Refractive Index |
|-----------------|------------------|
| water           | 1.33             |
| acetone         | 1.36             |
| glycerin        | 1.47             |
| benzene         | 1.50             |
| silicone oil    | 1.52             |
| sodium chloride | 1.54             |

#### REFRACTIVE INDEX



- ➤ The ratio of the speed of light in a vacuum to the speed of light in another substance is defined as the refractive index for the substance
- ➤ The speed of light in a vacuum is always the same, but when light moves through any other medium it travels more slowly since it is constantly being absorbed and re-emitted by the atoms in the material.
- ➤ Samples with different refractive indexes will produce different angles of refraction and this will be reflected in a change in the position of the borderline between the light and dark regions.

### REFRACTIVE INDEX (CONTI...)



- ➤ Absolute index of refraction (N) is the relation of speed widening of light in the vacuum to its speed in the present medium
- >Relative index of refraction (n) is the relation of speed widening of light in the air to its speed in the present medium
- In the case shown, the speed of light in medium A is greater than the speed of light in medium B.
- The relationship between light's speed in the two mediums (vA and vB), the angles of incidence (¬A) and refraction (¬B) and the refractive indexes of the two mediums (nA and nB) is shown:





$$\frac{v_{A}}{v_{B}} = \frac{\sin \theta_{A}}{\sin \theta_{B}} = \frac{n_{B}}{n_{A}}$$

$$\frac{n_D}{n_{unknown}} = \frac{\sin i}{\sin r}$$

#### FACTORS INFLUENCING RERFACTIVE INDEX

The two factors which affect the value of the refractive index are:

#### >Temperature

- •Refractive index values are usually determined at standard temperature.
- A higher temperature means the liquid becomes less dense and less viscous, causing light to travel faster in the medium. This results in a smaller value for the refractive index due to a smaller ratio.
- •A lower temperature means the liquid becomes denser and has a higher viscosity, causing light to travel slower in the medium. This results in a larger value for the refractive index due to a larger ratio.
- ■Refractometers usually have a means of temperature regulation.

#### **>** Wavelength of light

- ■The refractive index varies with wavelength linearly because different wavelengths interfere to different extents with the atoms of the medium.
- •It is important to use monochromatic light to prevent dispersion of light into different colours.
- ■The chosen wavelength should not be absorbed by the medium.
- ■The sodium D line at 598 nm is the most frequently used wavelength of light for a refractometer.

- ➤ Because the RI of a substance is strongly influenced by temperature and the wavelength of light used to measure it, therefore, care must be taken to control or compensate for temperature differences and wavelength.
- ➤ RI measurements are usually reported at a reference temperature of 20 degrees Celsius, which is equal to 68 degrees Fahrenheit, and considered to be room temperature.
- A reference wavelength of 589.3 nm (the sodium D line) is most often used.
- Though RI is a dimensionless quantity, it is typically reported as nD20 (or  $n^{20}_D$ ), where the "n" represents refractive index, the "D" denotes the wavelength, and the 20 denotes the reference temperature.
- Therefore, the refractive index of water at 20 degrees Celsius, taken at the Sodium D Line, would be reported as 1.3330 nD20.

# REFRACTIVE INDEX (conti...)



### It is also commonly used to:

- ➤ Help identify or confirm the identity of a sample by comparing its refractive index to known values.
- Assess the purity of a sample by comparing its refractive index to the value for the pure substance.
- ➤ Determine the concentration of a solute in a solution by comparing the solution's refractive index to a standard curve.



#### REFRACTOMETER



- A refractometer measures the extent to which light is bent (i.e. refracted) when it moves from air into a sample and is typically used to determine the refractive index (n) of a liquid sample.
- The refractive index is a unitless number, between 1.3000 and 1.7000 for most compounds
- ➤ The refractive index is a quantity which is a constant for a pure substance under standard conditions of temperature and pressure.





# INSTRUMENTATION



#### TYPES OF REFRACTOMETER



#### ABBE's REFRACTOMETER



## IMMERSION OR DIPPING REFRACTOMETER



PULFRICH REFRACTOMETER

## I.) ABBE REFRACTOMETER



- ➤ Light refraction through liquids to determine the amount of dissolved solids in liquids by passing light through a sample and showing the refracted angle on a scale.
- ➤ RI of the prism should be greater than that of the sample
- ➤ In abbe refractometer, the RI can be read directly, only a few drop of the liquid are needed, and either white or monochromatic light can be used.
- ➤ This refractometer consist, mainly a telescope and two matched right angle prisms.



## I.) ABBE REFRACTOMETER (conti...)



- The liquid is placed in contact with the prisms.
- Many refractometers are equipped with a thermometer and a means of circulating water through the refractometer to maintain a given temperature.
- Most of the refractive index measurements reported in the literature are determined at 20 or 25 °C.

Operation consists of placing 1 or 2 drops of the water sample on the prism, closing a glass plate over the sample, then looking through the eyepiece for the reading

# Abbe refractometer:

- Abbé refractometer working principle is based on critical angle.
- Sample is put between two prisms measuring and illuminating.
- Light enters sample from the illuminating prism, gets refracted at critical angle at the bottom surface of measuring prism,
- then the telescope is used to measure position of the border between bright and light areas.

- Telescope reverts the image, so the dark area is at the bottom, even if we expect it to be in the upper part of the field of view.
- Surface of the illuminating prism is matted, so that the light enters the sample at all possible angles, including those almost parallel to the surface.
- To prevent dispersion, Abbé added two compensating Amici prisms into his design.
- Not only telescope position can be changed to measure the angle, also position of Amici prisms can be adjusted, to correct the dispersion.





# Analyzing Results Finding Refractive Indexes:



Comparison with the literature to know the identity of the compound or to asses its purity

The following sources list refractive indexes for a wide variety of substances:



The CRC Handbook of Chemistry and Physics



Lange's Handbook of Chemistry



The Merck Index



Chemical catalogs (e.g., the one from Aldrich Chemical Co. ) MSDS datasheets

# Specific Refraction

a parameter characterizing the electronic polarizability of a unit mass of a substance in the high-frequency electromagnetic field of a light wave. The specific refraction r of a substance is equal to the substance's molecular refraction R divided by its molecular weight M. Specific refraction may be expressed in terms of a substance's index of refraction n in several ways; the form most often used is

where  $\rho$  is the density of the substance.

$$r = \frac{1}{\rho} \frac{n^2 - 1}{n^2 + 2}$$

#### MOLAR REFRACTIVITY

Molar refractivity, A, is a measure of the total polarizability of a mole of a substance and is dependent on the temperature, the index of refraction, and the pressure.

The molar refractivity is defined as

$$A=rac{4\pi}{3}N_{A}lpha,$$

Where,  $N_A \approx 6.022 \times 10^{23}$ 

is the Avogadro constant and  $\alpha$  is the mean polarizability of a molecule.

Substituting the molar refractivity into the Lorentz-Lorenz formula gives, for gases

$$A=rac{RT}{p}rac{n^2-1}{n^2+2}$$

where n is the refractive index, p is the pressure of the gas, R is the universal gas constant, and T is the (absolute) temperature.

#### **APPLICATIONS & USES**



- It is used in the examination of organic compounds (oils, solvents, etc.), solutions, food products, serum protein concentration.
- In veterinary medicine, a refractometer is used to measure the total plasma protein in a blood sample and urine specific gravity.
- 3) In gemmology, a refractometer is used to help identify gem materials by measuring their refractive index.
- 4) Since the index of refraction of a pure substance is constant at constant temperature and pressure, it can be used as a means of identification.
- 5) It is used to determine the purity of oils, fats, and waxes.
- 6) It is used to determine the amount of sugar in sugar solutions and in general, for determining total solids in fruit juices, tomato products, honey, syrups and soda water

# THANK YOU