Total Pages: 8

5144

M. Sc. (Final) Examination, 2016

MATHEMATICS

Paper-IV

(Viscous Fluid Dynamics)

Time: Three Hours Maximum Marks: 100

PART - A (खण्ड-अ) [Marks: 20

Answer all questions (50 words each).
All questions carry equal marks.
सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न का उत्तर पचास शब्दों से अधिक न हो।
सभी प्रश्नों के अंक समान हैं।

PART - B (खण्ड- ब) [Marks : 50

Answer five questions (250 words each).

Selecting one from each unit. All questions carry equal marks.

प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए, कुल पाँच प्रश्न कीजिए।

प्रत्येक प्रश्न का उत्तर 250 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART - C (खण्ड-स) [Marks: 30

Answer any two questions (300 words each).

All questions carry equal marks.
कोई दो प्रश्न कीजिए। प्रत्येक प्रश्न का उत्तर 300 शब्दों से अधिक न हो।

सभी प्रश्नों के अंक समान हैं।

PART-A

UNIT - I

- 1. (i) Define normal stress and shear stress.
 - (ii) Define mach number.

UNIT - II

E PUT 18 1314

- (iii) WRite equations of motion in case of plane couette flow.
- (iv) Define volume rate of flow.

UNIT - III

(v) Write N.S. equation in case of slow motion of a sphere.

(vi) What is Prandtl hypothesis for fluids with very small viscosity?

UNIT-IV

- (vii) What do you mean by similarity variable?
- (viii) In boundary layer separation, what will happen if pressure gradient is hero?

UNIT - V

- (ix) Derfine thermal boundary layer.
- (x) Write importance of Eckert number in thermal boundary layer.

P.T.O.

PART - B

UNIT - I

- Define stress at a point and show that it is a tensor of order two.
- Explain physical importance of Reynolds number and Froude number.

UNIT - II

4. Establish the formula $(\frac{1}{8})(\pi a^4/\mu L)(p_1-p_2)$ for the rate of steady flow of an incompressible fluid through a uniform circular pipe of radius a, p_1 and p_2 being the pressures at the two sections of the pipe distant L apart.

Discuss the flow of a viscous incompressible fluid in the neighbourhood of a stagnation point.

UNIT-III

- **6.** Explain Osceen's improvement of Stoke's theory.
- 7. Derive the Prandtl boundary layer equations for two dimensional flow of a slightly viscous incompressible fluid moving along a plane wall.

UNIT-IV

- 8. Give a short account of Gortler new series method.
- Discuss Walz-Thwaites method based on energy integral equations.

UNIT - V

- 10. Find out the simple integrals of the thermal boundary layer equations for the flow of an incompressible fluid past a flat plate kept at a constant temperature when the prandtl number of the fluid is unity.
- 11. Obtain the exact solution of the problem of the plate thermometer and show that for very large prandtl numbers the recovery factor is given by

$$r = 1.92 P_r^{\frac{1}{3}}$$

PART - C

UNIT - I

12. Derive Navier-Stokes equations concerning the motion of a viscous fluid.

UNIT-II

13. Discuss the unsteady flow of a viscous incompressible fluid over an oscillating plate.

UNIT - III

14. Discuss and obtain characteristic boundary layer parameters for Blasius-Topfer solution.

UNIT-IV

15. Show that the velocity distribution in the boundary layer flow along the wall of a convergent channel is given by

$$\frac{\mu}{U} = 3 \tanh^2 \left(\frac{\eta}{\sqrt{2}} + 1.146 \right) - 2$$

where
$$\eta = \frac{y}{x} \sqrt{\frac{\mu_1}{\nu}}$$
 and $U(x) = -\frac{\mu_1}{x}$ is

the potential flow velocity. Also calculate the characteristic boundary layer parameters.

UNIT - V and complied ?

16. Investivate the solution of thermal energy integral equation for the cooling problem of Pohlhausen's by taking a fourth degree temperature profile analogous to the velocity profile.
Obtain the locul Nusselt number for various ranges of the Prandtl number.