First Year Examination of the Three Year
 Degree Course, 2001
 (Faculty of Science)
 COMPUTER SCIENCE
 First Paper
 (Digital Electronics)
 Time - Three Hours
 Maximum Marks - 50
 Attempt FIVE questions in all, choosing ONE question from each unit.

UNIT I

1. (a) Convert the the decimal number 45:3125 into binary number. 3
(b) Convert the octal number 5276.12 into binary number. 3
(c) Subtract 110000_{2} from 10011_{2} using either I's complement or 2's complement.
2. (a) What is a BCD Code? Expresss 1472 into BCD code. 3
(b) Find largest + ve and -ve numbers with 8 bits. 2
(c) Write one important difference between ASCII and EBCDIC Codes. 2
(d) Express decimal number -24 in 8 bitt`s complement form.

UNIT II

3. (a) State and prove De Morgan's theorems for two inputs.
(b) Simplify the Boolean expression to its simplest from:

$$
[A B+B D)+A B)
$$

(c) $\quad A$ circuit has three inputs A, B and C. Show its truth table it its output Z is :

$$
Z=(A+B)(A+C)
$$

Draw its logic diagram.
4. (a) Use a Karnaugh map to reduce the following expression to a minimum of products from :-

$$
X=A B C+A B C+A B C+A B C+A B C
$$

(a) Draw the logic circuit represented by the expression :

$$
\mathrm{AB}(\mathrm{C}+\mathrm{D})
$$

UNIT III

5. (a) Explain the working of a NAND gate RS Flip - Flop. Give its truth table and times diagrams.
(b) Discss the working of a pulsed Master-Slave JK Flip-Flop circuit.
6. (a) With the help of a neat circuit, explain the working of a bi-directional shift register.
(b) Describe the difference between the serial and parallel methods of entering data into a register.

UNIT IV

7. (a) What re asynchronous and synchronous counters? Explain them giving examples.
(b) Discuss the working, circuit and timing diagrams of a 3-bit asynchronous binary counter.
8. (a) What is the basic diadvantage of an asynchronous counter?
(b) Disccu the working, circuit and timeing diagrams of EITHER a decade synchronous counter OR that of a decade asynchronous counter.

UNIT V

9. Discuss the application of XOR gates in:
(i) Half adder
(ii) Comparator
(iii) Parity checker and generator.
10. Write notes on any TWO of the following :-
(a) Multiplexer ciruits.
(b) Encoder cirucits
(c) Decodercircuits.
