First Year Examination of the Three Year Degree Course, 2001 (Faculty of Science) PHYSICS Paper I (Mechanics & Properties of Matters) Time - Three Hours Maximum Marks - 50 Attempt Five question in all, selecting ONE question from each unit. All questions carry equal marks.

UNIT I

1.	(a)	What do you understand by the motion of a system of variable mass? Explain it					
		with suitable example.	3+3				
	(b)	Locate the centre of mass of three particles of 2 kg. 3 kg and 4 kg placed at the					
		three corners of an equilateral triangle of one meter side.	4				
		OR					
2.		Define moment of inertia and derive its unit and dimension. C	alculate the moment				

of ineritia of a diatomic molecule. 2+2+6

UNIT II

3. What do you understand by a damped harmonic oscillator? 2+4+4
OR
4. State and explain Fourier's theorem. Apply this theorem to analyse the output wave of a half wave rectifier when the input wave is of the form E=E₀ sin wt.

2+4+4

UNIT III

- 5.(a)State and prove Gauss's divergence theorem.5(b)For the position vector r = ix + jy + kz prove that :2.5+2.5(i)div R = 3 and
 - (ii) $\operatorname{div}(r/r^3) = 0.$
- OR

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

Explain inertial and non-inertial frames of references. Show that a frame of reference having uniform translatory motion relative to an inertial frame is also inertial.

UNIT IV

7.Write short notew on the following :-5+5(a)Michelson-Morley experiment.(b)Group and phase velocity.OR8.Derive differential equation of a wave motion.4+6Prove that : $\forall = \sqrt{Y/p}$

Where the symbols have their usual meaning.

UNIT-V

9.	(a)	Defin	ne bending moment and derive its expression.					2	2+3			
	(b) \	What is	Cantilever?	Determine	Young's	modulus	(Y)	for	the	material	of	а
		Cantilever.						2	2+3			
					OR							
10.	(a)	Define viscosity and write down its unit and dimension.							2	2+1		
	(a)	Derive an expression for the liquid flow through a narrow capillary								tube and		
		discuss the limitations and corrections for the derived formula.							a. (5+1+1		