First Year Examination of the Three Year
 Degree Course, 2001
 (Faculty of Science)
 PHYSICS
 Paper I
 (Mechanics \& Properties of Matters)
 Time - Three Hours
 Maximum Marks - 50
 Attempt Five question in all, selecting ONE question from each unit.
 All questions carry equal marks.

UNIT I

1. (a) What do you understand by the motion of a system of variable mass? Explain it with suitable example.
(b) Locate the centre of mass of three particles of 2 kg .3 kg and 4 kg placed at the three corners of an equilateral triangle of one meter side.

OR
2. Define moment of inertia and derive its unit and dimension. Calculate the moment of ineritia of a diatomic molecule. $2+2+6$

UNIT II
3.

What do you understand by a damped harmonic oscillator?
$2+4+4$
OR
4.
5.
(a) State and prove Gauss's divergence theorem. 5
(b) For the position vector $r=i x+j y+k z$ prove that: $2.5+2.5$
(i) $\quad \operatorname{div} \mathrm{R}=3$ and
(ii) $\operatorname{div}\left(r / r^{3}\right)=0$.
6. Explain inertial and non-inertial frames of references. Show that a frame of reference having uniform translatory motion relative to an inertial frame is also inertial. 4+6

UNIT IV

7. Write short notew on the following :- $5+5$
(a) Michelson-Morley experiment.
(b) Group and phase velocity.

OR

8.

Derive differential equationof a wave motion.
4+6
Prove that :
$\mathrm{V}=\sqrt{ } \mathrm{Y} / \mathrm{p}$
Where the symbols have their usual meaning.

UNIT-V

9. (a) Define bending moment and derive its expression.
$2+3$
(b) What is Cantilever? Determine Young's modulus (Y) for the material of a Cantilever. 2+3 OR
10. (a) Define viscosity and write down its unit and dimension. $2+1$
(a) Derive an expression for the liquid flow through a narrow capillary tube and discuss the limitations and corrections for the derived formula. $\quad 5+1+1$
