First Year Examination of the Three Year
 Degree Course, 2001
 (Faculty of Science)
 PHYSICS
 Paper II
 (Optics)
 Time - Three Hours
 Maximum Marks - 50
 Attempt Five question in all, selecting ONE question from each unit.
 All questions carry equal marks.

UNIT I

1. Deduce Newton's formula for a converging lens forming a real image. What do you understand from Nodal points and Nodal planes?
$6+2+2$
OR
2. What do you understand by the term achromatism of a lens? Derive the condition of achromatism for two thin lensews of focal lengths f 1 and f 2 made of same material but separated by a distance.

UNIT II

3. (a) Discuss the coherence of an ordinary source of light and a lasersource of light. Can a two-level laser be constructed? 2+2+2
(b) In a michelson interferometer, 200 fringes cross the field of view when the movable mirror is displaced through 0.05896 mm . Calculate the wavelength of monochromatic light used.

OR
4. Explain the construction of a Febry-Perot interferometer and explain its action.

Explain colour effects in Thin films.
$3+3+4$

UNIT III

5. Describe the construction of Half-Period zones. A circular opaque disc of diamerter 1 cm is placed at a distance of 1 meter from a point source of light (= 6000 A). The diffraction pattern is observed at a distance of 2 meters from the disc. Calculate the number of Fresnel zones covered by the disc.

$$
6+4
$$

OR

6. Discuss the Fresnel diffraction pattern due to a straight edge. Give the necessary theory.

UNIT IV

7. (a) What do you understand by the resolving power of a telescope? Deduce an expression for resolving power of a telescope.
(b) Calculate the limiting angle '0' which two distant separated star should subtend on the objective of one inch aperture telescope so as to be just resolved by it. (1 inch $=2.54 \mathrm{~cm}$.) The effective wavelength of light is 5500 A .

OR

8. (a) Discuss Fraunhoffer diffraction due to a single slit. Explain the basic difference between the diffraction spectra of a single slit and a plane transmission grating.

3+3
(b) A double slit is illuminated with light of wavelength $=4800 \mathrm{~A}$. The slits are separated by 0.1 mm and the slit width is 0.020 mm . The Fraunhoffer diffractions pattern is observed on a screen 50 cm away from the slits. Calculate the fringe spacing.

UNIT V

9. Discuss the state of polarisation of emergentlight in following cases :-
(i) A plane polarised light falls normally on a half ave plate when vibration direction is at 45 degree with the optic axis of the plate, the optic axis being parallel to the face.
(ii) A plane polarised light falls normally on a quarter wave plate at an angle other than 45 degree with the optic axis which is parallel to the face of plate. (exclude 0 and 90)
(iii) A plane polarised light falls normally on a quarter wave plate at an angle-45 with the optic axix which is parallel to the face to plate.
(iv) A plane polarisee light falls normally on a quarter wave plate with optic axis perpendicular to the face.

$$
3+2+2+3
$$

OR
10. (a) Describe a Laurant's half-shade polarimeter for determination of specifc rotation of sugar solution. 6
(b) Find the specif rotation of a given sample of sugar solution if the plane of polarisation is turned through 26.4 degree. The length of tube containing 20% concentration sugar solution is 20 cm .

4

