Second Year Examination of the Three Year Degree Course, 2001
(Faculty of science)
PHYSICS
Paper-I
(Thermodynamics and Statistical Physics)
Time: 3 Hours
[Maximum Marks :50]
Attempt any five questions, selecting at least one question from each unit, All questions carry equal marks.

UNIT-I

1. (a) Explain the principle of cooling a system by adiabatic demagnetization. 4
(b) Explain the terms 'mean free path', and 'collision cross section' for particles in a gas.

2+2
(c) Two particles in a gas move with the same speed making an angle θ with each other. Calculate the speed of one of the particle relative to the other?

2
2. (a) Find an expression for the work done by an ideal gas in its adiabatic expansion.

4
(b) How are the root-mean-square, average and most probable speeds of particles in a gas defined? Find out the rms speed of atoms in argon gas at 300 K . Atomic weight of argon is 40 .
$3+3$

UNIT-II

3. What is Joule-Thomson coefficient? Derive a general expression for it and, hence,find the Joule-Thomson coefficient for a Van der Waals gas. $2+4+4$
4. (a) Derive Maxwell's second thermodynamic relation. 5
(b) Express the difference in two heat capacities of a system in terms of its other measurable macroscopic parameters. 5

UNIT-III

5. (a) A black-body of volume V is at temperature T . Find out the number of vibrations of the radiation between wavelengths λ and $\lambda+d \lambda$.

6
(b) A furnace is at temperature T . The maximum of the radiation intensity emitted by it occurs at wavelength λ_{m}. Temperature of the furnace is raised to 2 T . At what wavelength will now the maximum occur, and by what factor will the maximum height increase or decrease? $2+2$
6. (a) Find average energy of a Plank oscillator.
(b) The operating temperature of a tungstan filament in an incandescent lamp is 2460 K , and its absorptance (or absorptivity) is 0.35 . Find the surface area of the filament of a $100-\mathrm{W}$ lamp.

4

UNIT-IV

7. (a) A system consists of four spin-half particles fixed in space. Tabulate all the possible microstates of the system. 5
(b) A system consisting of N spin-half particles fixed in space is kept in magnetic field B. The probability of a particle with its spin being found parallel to B is p. Find out the probability of macrostate in which the number of spins parallel to B is n.

5
8. Write down the Bose-Einstein distribution function, and derive an expression or the spectral distribution of energy density of blackbody radiation.

$$
2+8
$$

UNIT-V

9. What do you understand by 'Platinum temperature'? Is is identical with ideal gas temperature? If not, explain how Platinum resistance thermometer is used to measure temperatures, and in what range. 2+2+6
10.(a) Describe a method for measuring critical constants of a gas 6.
(b) How is the Solar Constant determined? 4

Constants

Avogargdro Number $\left(\mathrm{N}_{\mathrm{A}}\right)=6.02 \times 10^{23} /$ mole
Stefan Boltzmann constant (σ) $5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}^{4}$
Boltzmann constant $(k)=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

