Second Year Examination of the

Three Year Degree Course, 2001
(Faculty of science)
PHYSICS
Paper-II
Electronics (Basic)
Time : 3 Hours
[Maximum Marks :50]
Attempt any five questions,
selecting at least one question from each unit,
All questions carry equal marks.

UNIT-I

1. (a) What is Zener diode? Draw its volt-ampere characteristic curve and explain and explain the mechanism of Zener breakdown.

6
(b) A transistor, for which $\beta=49$, is connected in common base configuration. Find the change in collector current corresponding to 10 mA change in emitter current.

4
2. (a) Draw the structural diagram of a JFET and explain its working. 5
(b) What is reverse saturation current in a transistor? Obtain an expression for collector current in terms of reverse saturation current for common emitter configuration.

5

UNIT-II

3. What are integrated circuits? What are their advantages over discrete circuits? Describe briefly with the help of suitable diagram various steps involved in fabrication of integrated circuits. $2+2+6$
4. (a) With the help of suitable diagram describe the procedure to fabricate an integrated circuit diode. State the limitations of integrated circuits technology. 4+2
(b) State the difference among different scales of integration used in integrated circuit technology.

4

UNIT-III

5. (a) Draw the circuit diagram of a bridge rectifier and explain its working. Write its metirs and demerits over a centre tap full wave rectifier.

4+2
(b) Write short note on a voltage regulated power supply.

4
6. (a) Draw the circuit diagram of a full wave rectifier with shunt capacitor filter. With the help of input and output waveform diagram explain its working.

5
(b) Define ripple factor. Prove that for a half wave rectifier the ripple factor is 121 percent.

2+3

UNIT-IV

7. (a) Describe experimental method for determining input and output resistance of an amplifier.

4
(b) What do you mean by biasing of a transistor? Draw the collector to base bias circuit of a transistor and derive expression for stability factor. $2+4$
8. (a) Classify the amplifiers on the basis of operating conditions.
(b) A transistor used as an CE amplifier has h-parameters : $h_{\text {ie }}=800 \Omega, h_{\text {fe }}=50, h_{\text {oe }}=80 \times 10^{-6}$ mho and $h_{\text {re }}=5.5 \times 10^{-4}$. It the load resistance used in this amplifier is $R_{L}=5 \mathrm{k} \Omega$ calculate its current gain, input resistance and voltage gain.

5

UNIT-V

9. (a) Draw the circuit diagram of a CE amplifier with current series feedback and obtain expression for its input impedance and voltage gain.
(b) An RC coupled transistor amplifier has mid-frequency voltage gain 100. The values of the lower and upper cut off frequencies for this amplifier are $f_{1}=50 \mathrm{~Hz}$ and $\mathrm{f}_{2}=500 \mathrm{kHz}$. Calculate those frequencies at which voltage gain reduces to 80 .

4
10. (a) Prove that in a multistage cascaded amplifier, on increasing the number of amplifier stages, its overall gain increase and bandwidth decreases. 5
(b) Write a short note on transformer coupled amplifier5

