First Year Examination of the

 Three Year Degree Course, 2001(For Science and Commerce) Paper III
(Official Statistics and Numerical Methods)
Time : 3 Hours
[Maximum Marks :50]

SECTION - A

1. Write a note on area and Yield statistics.
2. Write a note on Trade Statistics.
3. Explain the following in the context of LPP :
(i) Slack and Surplus variable.
(ii) feasible solution and Basic Feasible solution.
(iii) Mathematical Form of Linear Programming Problem.
4. (a) Solve the following LPP by Simplex method.

Maximize

$$
z=2 x_{1}+x_{2}
$$

s.t.
$x_{1}-x_{2} \leq 10$
$2 x_{1}-x_{2} \leq 40$
and
$x_{1}, x_{2} \geq 0$.
(b) Write the dual form of the following LPP :

Minimize
s.t.
$z=15 x_{1}+10 x_{2}$
$3 x_{1}+5 x_{2} \geq 5$
$-5 x_{1}-2 x_{2} \leq-3$
and

$$
x_{1}, x_{2} \geq 0
$$

$$
5+4
$$

SECTION - B

5. (a) Define the operators Δ, E and ∇ and establish the relationship among them.
(b) Determine $\left.\Delta^{3}\{1+x)(1-3 x)(1+5 x)\right\}$, unity being the interval of differencing.
6. (a) Express the following function and its differences in the fraction notation

$$
f(x)=x^{4}-12 x^{3}+42 x^{2}-30 x+9
$$

(b) Prove that

$$
\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]
$$

7. (a) Obtain the estimate of missing figures in the following table:

x	$:$	1	2	3	4	5	6	7	8
y_{x}	$:$	2	4	8	-	32	-	128	256

Explain why the result differs from 16 and 64.
(b) Prove the following:
$\Delta^{n} U_{x}=U_{x+n}-{ }^{n} C_{1} U_{x+n-1}+\ldots \ldots \ldots . .+(-1)^{n} U_{x} . \quad 5+4$
SECTION - C
8. Prepare a divided difference table for the following data:

x	$:$	1	2	4	7	12
u_{x}	$:$	22	30	82	106	216

9
9. State and prove Newton's divided difference formula for interpolation. What is the necessity of such formula?
10. If $f(x)=1 / x ; x=a, b, c, d$, obtain divided differences of all possible orders.

