First Year Examination of the Three Year Degree Course, 2001

(For Science and Commerce)

Paper III

(Official Statistics and Numerical Methods)

Time : 3 Hours [Maximum Marks :50]

SECTION - A

1.	Write a note on area and Yield statistics.						
2.	Write a note on Trade Statistics.						
3.	Explain the following in the context of LPP : (i) Slack and Surplus variable.						
	(ii) feasible solution and Basic Feasible solution.						
	(iii) Mathematical Form of Linear Programming Problem.						
4.	(a)	Maximize	ng LPP by Simplex method. $z = 2x_1 + x_2$ $x_1 - x_2 \le 10$ $2x_1 - x_2 \le 40$				
		and	$x_1, x_2 \geq 0.$				
	(b)	Write the dual form of the following LPP :Minimize $z = 15x_1 + 10 x_2$ s.t. $3x_1 + 5x_2 \ge 5$ $-5x_1 - 2x_2 \le -3$					
		and	$x_1, x_2 \geq 0.$	5+4			

SECTION – B

5. (a) Define the operators Δ , E and ∇ and establish the relationship among them.

(b) Determine Δ^3 { 1 + x) (1 - 3x) (1 + 5x)}, unity being the interval of differencing. 5+4

6. (a) Express the following function and its differences in the fraction notation : $f(x) = x^4 + 12x^3 + 42x^2 + 20x + 0$

5+4

(b) Prove that

$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right].$$

7. (a) Obtain the estimate of missing figures in the following table :

Х	:	1	2	3	4	5	6	7	8
Уx	:	2	4	8	-	32	-	128	256
Explain why the result differs from 16 and 64.									

(b) Prove the following :

$$\Delta^{n} U_{x} = U_{x+n} - {}^{n}C_{1} U_{x+n-1} + \dots + (-1)^{n} U_{x}.$$
 5+4

SECTION – C

8.	Prepare a divided difference table for the following data:								
	2	х	:	1	2	4	7	12	
	I	u _x	:	22	30	82	106	216	9

9. State and prove Newton's divided difference formula for interpolation. What is the necessity of such formula? **9**

10. If f(x) = 1/x; x = a, b, c, d, obtain divided differences of all possible orders. 9