Programme Specific Outcomes and Course Outcomes Department of Mathematics and Statistics

Programme Specific	PSOs of M.Sc. Statistics
Outcomes	PSO1. Preliminaries of integration and probability distribution.
	PSO2. Analysis study of different sampling methods and classification of
	design of experiments.
	PSO3. Study of multivariate analysis, optimization techniques and different
	models of stochastic process.
	PSO4. Advanced study of design, inference and sample survey.

Course Outcomes	COs o	of the course "Measure and Integration" (Sem-I)
	Course	outcome:- at the end of class students will gain knowledge of
	CO1	Set theory with its limits, classes and functions.
	CO2	Measure and its properties.
	CO3	Probability measure- measurable space.
	CO4	Measurable functions and its properties.
	CO5	Properties of Integral.
	COs o	of the course "Matrices and Linear Algebra" (Sem-I)
	Course	outcome:- at the end of class students will gain knowledge of
	CO1	Matrices properties, partitioning and universe matrices with linear
		dependence and independence.
	CO2	Basic and dimension, orthonormal basis.
	CO3	Characteristic equations with Eigen values and vectors.
	CO4	Bilinear and quadratic forms.
	CO5	Singular value and Jordon decomposition.
	COs o	of the course "Probability Theory" (Sem-I)
	Course	outcome:- at the end of class students will gain knowledge of
	CO1	Axiometic enpresent to probability and its application
	CO1	Independence of experiments and events. Baye's theorem and its
	02	application.
	CO3	Random variables, distribution function and multivariate and frequency
	a a i	function.
	CO4	Mathematical expectation and its properties.
	CO5	WLLN and central limit theorem.

COs of the course "Theoretical Distributions" (Sem-I)

Course outcome:- at the end of class students will gain knowledge of

- CO1 Generating functions and their applications.
- CO2 Inversion theorem, derivation of distribution function and application of central lime theorem.
- CO3 Discrete distributions with their properties and application.
- CO4 Continuous distributions with their properties and application.
- CO5 Compound distributions, Pearsonian system of frequency curve.

COs of the course "Practicals Based on C-Programming in Computational Statistics" (Sem-I)

Course outcome:- at the end of class students will gain knowledge of

Introduction to computer and its uses. Application of C-programming in various areas of computational statistics. Techniques related to generating random number. Developing algorithm, flow chart and program for some useful statistical data analysis problems.

COs of the course "Practicals Based on CT 03 & CT 04" (Sem-I)

Course outcome:- at the end of class students will gain knowledge of

- * Calculation of moments, Skewness and Kurtosis.
- * Fitting of Binomial, Poisson and Normal distribution.
- * Calculation of area under normal curve.

COs of the course "Sampling Distributions" (Sem-II)

Course outcome:- at the end of class students will gain knowledge of

- CO1 Univariate sampling distributions, Chi-square distribution (central and non-central) and their applications.
- CO2 t- and F distribution (central and non central) and their applications.
- CO3 Orthogonal polynomials, order statistics and their distribution.
- CO4 Sampling distribution of median and range, regression and correlation, null and non-null distribution of sample correlation coefficient.
- CO5 Bivariate distribution (discrete and Continuous)

COs of the course "Statistical Inference-I" (Sem-II)

Course outcome:- at the end of class students will gain knowledge of

- CO1 Elements of statistical decision functions, point estimation and their properties.
- CO2 Minimum mean square, MVU and UMVU estimators, CR bounds.
- CO3 Various method to obtain maximum likelihood estimators (MLE's) interval estimation.
- CO4 Basic concepts of testing hypothesis, two kind of errors, NP Lemma for determination of best critical region.
- CO5 Non-parametric test and sequential analysis its construction and its application.

COs of the course "Design of Experiments-I" (Sem-II)

Course outcome:- at the end of class students will gain knowledge of

- CO1 Analysis of models, orthogonal polynomial, ANCOVA, transformation.
- CO2 Principles of experimentation, CRD, RBD.
- CO3 LSD & BIBD and their analysis.
- CO4 Factorial experiments and confounding.
- CO5 Missing plot technique with reference to RBD and split plot design.

* PPS	WR selection of sample and estimation.	
COs	of the course "Multivariate Analysis" (Sem-III)	
Course	Course outcome:- at the end of class students will gain knowledge of	
CO1	Multivariate normal distribution and its properties and distribution o quadratic forms.	
CO2	MLE's of the mean vector and covariance matrix.	
CO3	Hotelling's T^2 its properties and uses, Mahalnobis D^2 .	
CO4	Wishart distribution and its properties classification of observations.	
CO5	Null and non-null distributions of partial and multiple correlation	
	coefficients and multivariate central limit theorem.	
COs	of the course "Statistical Inference-II" (Sem-III)	
Course	e outcome:- at the end of class students will gain knowledge of	
CO1	Likelihood ratio test and its applications.	
CO2	Properties of MLE's and generalization of CR inequality for multipalametric case.	
CO3	Complete family of probability distributions.	
CO4	UNP test with and more than one parameter.	
CO5	Similar regions and relationship between notions of completeness.	
COs	of the course "Practicals Based on CT 09" (Sem-III)	
Course	e outcome:- at the end of class students will gain knowledge of	
 * Mul * Line prol * Esti corr * Ana C-la 	tivariate analysis. ear combination of correlated normal variates and evaluation of pabilities. mation and testing of mean vector, covariance, partial and multiple relation coefficient. lysis of discriminate functions. Their software development in inguage.	
COs	of the course "Operations Research" (Sem-III)	

Course	e outcome:- at the end of class students will gain knowledge of
CO1	OR definition, scope and nature, transpiration and assignment problems.
CO2	Deterministic, Inventory models with at most one linear restriction and
	without restriction probabilistic inventory models.
CO3	Queuing theory and its differ models of process.
CO4	Simulation, definition, its types uses and limitations.
CO5	Steady state, solutions of Markovian queuing models.
COs	of the course "Stochastic Processes" (Sem-III)
Course	e outcome:- at the end of class students will gain knowledge of
CO1	Stochastic process with stationary transition probabilities and its properties.
CO2	Classification of states stationary distribution of a Markov chain.
CO3	Markov pure jump process, passion process, birth and death process.
CO4	Second order processes mean and covariance function.
CO5	Stochastic differential equations, estimation theory and special
	distribution.
COs (Sem	of the course " Practicals Based on DSE 01 & DSE 02 " -III)
Course	e outcome:- at the end of class students will gain knowledge of
* OP	and stochastic.
* pro	cess and their software developments in C-language.
COs	of the course "Design of Experiments-II" (Sem-IV)
Course	e outcome:- at the end of class students will gain knowledge of
CO1	Linear estimation of Gauss Markoff theorem, testing of hypothesis and sub hypothesis.

CO2 Analysis of two way elimination of heterogeneity, orthogonality
connectedness and Balancedness, incomplete block designs.
CO3 Concept of association scheme with two associate classes.
CO4 Lattice and Linked block designs, MOLS for prime and power of prime,
Construction and analysis of Youden square design.
CO5 Methods of construction of BIBD and SBIBD.
COs of the course "Non-Parametric Inference" (Sem-IV)
Course outcome:- at the end of class students will gain knowledge of
CO1 Order statistics and their sampling distribution and hypothesis testing for population quantities.
CO2 Tolerance limits for distribution and coverage's, Chi-square goodness of
fit test and signed test.
CO3 Test for two sample problems comparison and their distributions, Run
test, median test and U-test.
CO4 Linear ranks statistics, Probability distribution and irefulness.
CO5 Correlation between rank order statistics and variate values. Test based
on the total number of runs and the length of the longest run.
COs of the course "Practicals Based on CT 11" (Sem-IV)
Course outcome:- at the end of class students will gain knowledge of
* Testing of hypothesis for one-way and two-way classification.
 * Analysis of IBD, GDD. * Analysis of linked block design.
* Analysis of simple lattice, youden square etc.
COs of the course "Theory of Sample Surveys" (Sem-IV)
Course outcome:- at the end of class students will gain knowledge of
CO1 Partition of sample space and definition of T-classes of linear
estimators.

CO2 Quenouille's techniques of bias reduction and its applications, methods
of estimation in PPSWR, ratio method of estimation.
CO3 Ratio and regression method of estimation for PPSWR, Variance by
HT-estimator and YG-estimators.
CO4 Sen- Midzuno scheme of sampling of inclusion probabilities.
CO5 The theory of multistage sampling with VPWR and VPWOR.
COs of the course "Demography" (Sem-IV)
Course outcome:- at the end of class students will gain knowledge of
CO1 Census and vital data.
CO2 Stationary populations, construction of life table.
CO3 Stable population theory.
CO4 Demographic trends in India
CO5 Bivariate growth models, migration models, fertility and mortality
analysis models.
COs of the course "Practicals Based on CT-12" (Sem-IV)
Course outcome:- at the end of class students will gain knowledge of
* Horvitz and Thompson's procedure of estimating mean of the population.
* Yates and Grundy method, Midzuno's sampling scheme, Rao-Hartley
Cochran schemes.
* Two stage sampling method.
* Ratio and regression method of estimation and software development of
above practical in C- language.